Sepsis-induced myocardial dysfunction is associated with increased oxidative stress and mitochondrial dysfunction. Current evidence suggests a protective role of thioredoxin-1 (Trx1) in the pathogenesis of cardiovascular diseases. However, it is unknown yet a putative role of Trx1 in sepsis-induced myocardial dysfunction, in which oxidative stress is an underlying cause.
View Article and Find Full Text PDFAims: Obesity arises on defective neuroendocrine pathways that increase energy intake and reduce mitochondrial metabolism. In the metabolic syndrome, mitochondrial dysfunction accomplishes defects in fatty acid oxidation and reciprocal increase in triglyceride content with insulin resistance and hyperglycemia. Mitochondrial inhibition is attributed to reduced biogenesis, excessive fission, and low adipokine-AMP-activated protein kinase (AMPK) level, but lateness of the respiratory chain contributes to perturbations.
View Article and Find Full Text PDFThe high mortality rate of cardiogenic shock in acute myocardial infarction (AMI) implies that debate over the correct haemodynamic management is still unresolved. The purpose of this review is to re-evaluate the reciprocal relationships between oxygen-related variables and response to treatment in a large number of patients with AMI. A MEDLINE search of reports published between 1970 and 2008 was performed.
View Article and Find Full Text PDFBackground: In the metabolic syndrome with hyperinsulinemia, mitochondrial inhibition facilitates muscle fat and glycogen accumulation and accelerates its progression. In the last decade, nitric oxide (NO) emerged as a typical mitochondrial modulator by reversibly inhibiting citochrome oxidase and oxygen utilization. We wondered whether insulin-operated signaling pathways modulate mitochondrial respiration via NO, to alternatively release complete glucose oxidation to CO(2) and H(2)O or to drive glucose storage to glycogen.
View Article and Find Full Text PDFIn the last years, nitric oxide synthases (NOS) have been localized in mitochondria. At this site, NO yield directly regulates the activity of cytochrome oxidase, O(2) uptake and the production of reactive oxygen species. Recent studies showed that translocated neuronal nitric oxide synthase (nNOS) is posttranslationally modified including phosphorylation at Ser 1412 (in mice) and myristoylation in an internal residue.
View Article and Find Full Text PDFAlthough transcriptional effects of thyroid hormones have substantial influence on oxidative metabolism, how thyroid sets basal metabolic rate remains obscure. Compartmental localization of nitric-oxide synthases is important for nitric oxide signaling. We therefore examined liver neuronal nitric-oxide synthase-alpha (nNOS) subcellular distribution as a putative mechanism for thyroid effects on rat metabolic rate.
View Article and Find Full Text PDFMitochondria are the specialized organelles for energy metabolism but also participate in the production of O(2) active species, cell cycle regulation, apoptosis and thermogenesis. Classically, regulation of mitochondrial energy functions was based on the ADP/ATP ratio, which dynamically stimulates the transition between resting and maximal O(2) uptake. However, in the last years, NO was identified as a physiologic regulator of electron transfer and ATP synthesis by inhibiting cytochrome oxidase.
View Article and Find Full Text PDFArachidonic acid is not freely stored in the cells. A number of different pathways for the mobilization of this compound have been proposed, including a novel mechanism that involves the release of arachidonic acid from arachidonoyl-CoA by a thioesterase with substrate specificity for very-long-chain fatty acids. In rat heart, the acyl-CoA thioesterase activity can be regulated by a mechanism that involves beta-adrenoceptors.
View Article and Find Full Text PDF