Publications by authors named "Jorge Pelaez"

Every fungal cell is encapsulated in a cell wall, essential for cell viability, morphogenesis, and pathogenesis. Most knowledge of the cell wall composition in fungi has focused on ascomycetes, especially human pathogens, but considerably less is known about early divergent fungal groups, such as species in the Zoopagomycota and Mucoromycota phyla. To shed light on evolutionary changes in the fungal cell wall, we studied the monosaccharide composition of the cell wall of 18 species including early diverging fungi and species in the Basidiomycota and Ascomycota phyla with a focus on those with pathogenic lifestyles and interactions with plants.

View Article and Find Full Text PDF

Molecular dynamics simulations are reported for the four component nematic liquid crystal mixture E7, which is used commercially. We are able to show the growth of a nematic phase directly from an isotropic liquid over a 100 ns period for an all-atom model, and study orientational and dipole order within the nematic phase. The simulations show that the cyanoterphenyl component of the mixture, 5CT, is more ordered than the three cyanobiphenyl components.

View Article and Find Full Text PDF

We have performed molecular dynamics simulations of a 2,5-bis-(p-hydroxyphenyl)-1,3,4-oxadiazole mesogen (ODBP-Ph-C(7)) at a fully atomistic level for a range of temperatures within the region that has experimentally been assigned to a biaxial nematic phase. Analysis of the data shows that the simulated nematic phase is biaxial but that the degree of biaxiality is small. The simulations show also the formation of ferroelectric domains in the nematic where the molecular short axis is aligned with the oxadiazole dipoles parallel to each other.

View Article and Find Full Text PDF