Rev Inst Med Trop Sao Paulo
December 2020
Stenotrophomonas maltophilia has emerged as an important opportunistic pathogen in the last decade. Increased resistance to sulfamethoxazole/trimethoprim (SMX/TMP) has been reported in S. maltophilia strains in the past few years, leading to few therapeutic options.
View Article and Find Full Text PDFBackground: The aim of this study was to evaluate the in vitro susceptibility of MDR gram-negatives bacteria to old drugs such as polymyxin B, minocycline and fosfomycin and new drugs such as tigecycline.
Methods: One hundred and fifty-three isolates from 4 Brazilian hospitals were evaluated. Forty-seven Acinetobacter baumannii resistant to carbapenens harboring adeB, blaOxA23, blaOxA51, blaOxA143 and blaIMP genes, 48 Stenotrophomonas maltophilia including isolates resistant to levofloxacin and/or trimethoprim-sulfamethoxazole harboring sul-1, sul-2 and qnrMR and 8 Serratia marcescens and 50 Klebsiella pneumoniae resistant to carbapenens harboring blaKPC-2 were tested to determine their minimum inhibitory concentrations (MICs) by microdilution to the following drugs: minocycline, ampicillin-sulbactam, tigecycline, and polymyxin B and by agar dilution to fosfomycin according with breakpoint criteria of CLSI and EUCAST (fosfomycin).
A recombinant vaccine that expresses the envelope (E) gene of dengue virus type 4 was tested for immunogenicity and protection in Macaca fascicularis. One hundred micrograms of semipurified recombinant E protein (E4rec) expressed in Pichia pastoris was used to immunize three animals. Neutralizing antibodies to dengue 4 virus with a titer of 1:30 were detected in all immunized monkeys prior to challenge.
View Article and Find Full Text PDF