Introduction: Artemisinin is a secondary metabolite well-known for its use in the treatment of malaria. It also displays other antimicrobial activities which further increase its interest. At present, Artemisia annua is the sole commercial source of the substance, and its production is limited, leading to a global deficit in supply.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are non-coding small RNAs that play crucial roles in plant development and stress responses and can regulate plant interactions with beneficial soil microorganisms such as arbuscular mycorrhizal fungi (AMF). To determine if root inoculation with distinct AMF species affected miRNA expression in grapevines subjected to high temperatures, RNA-seq was conducted in leaves of grapevines inoculated with either or and exposed to a high-temperature treatment (HTT) of 40 °C for 4 h per day for one week. Our results showed that mycorrhizal inoculation resulted in a better plant physiological response to HTT.
View Article and Find Full Text PDFInterannual and local fluctuations in wheat crop yield are mostly explained by abiotic constraints. Heatwaves and drought, which are among the top stressors, commonly co-occur, and their frequency is increasing with global climate change. High-throughput methods were optimized to phenotype wheat plants under controlled water deficit and high temperature, with the aim to identify phenotypic traits conferring adaptative stress responses.
View Article and Find Full Text PDFThe ubiquitin-like modifying peptide SMALL UBIQUITIN-LIKE MODIFIER (SUMO) has become a known modulator of the plant response to multiple environmental stimuli. A common feature of many of these external stresses is the production of reactive oxygen species (ROS). Taking into account that SUMO conjugates rapidly accumulate in response to an external oxidative stimulus, it is likely that ROS and sumoylation converge at the molecular and regulatory levels.
View Article and Find Full Text PDFPlant phenotyping is an emerging science that combines multiple methodologies and protocols to measure plant traits (e.g., growth, morphology, architecture, function, and composition) at multiple scales of organization.
View Article and Find Full Text PDFIncreasing temperatures and extended drought episodes are among the major constraints affecting food production. Maize has a relatively high temperature optimum for photosynthesis compared to C crops, however, the response of this important C crop to the combination of heat and drought stress is poorly understood. Here, we hypothesized that resilience to high temperature combined with water deficit (WD) would require efficient regulation of the photosynthetic traits of maize, including the C-CO concentrating mechanism (CCM).
View Article and Find Full Text PDFPlants are increasingly exposed to events of elevated temperature and water deficit, which threaten crop productivity. Understanding the ability to rapidly recover from abiotic stress, restoring carbon assimilation and biomass production, is important to unravel crop climate resilience. This study compared the photosynthetic performance of two Triticum aestivum L.
View Article and Find Full Text PDFWhen a dark-adapted leaf is illuminated with saturating light, a fast polyphasic rise of fluorescence emission (Kautsky effect) is observed. The shape of the curve is dependent on the molecular organization of the photochemical apparatus, which in turn is a function of the interaction between genotype and environment. In this paper, we evaluate the potential of rapid fluorescence transients, aided by machine learning techniques, to classify plant genotypes.
View Article and Find Full Text PDFIn the last decade, several works showed that even bryophytes from aquatic environments, if slowly dehydrated, can cope with desiccation in a response like the one from desert bryophytes. This led to the hypothesis that, if bryophytes from contrasting habitats can have similar responses, desiccation tolerance (DT) is partially inductive and not only constitutive as previously proposed and, therefore, colony morphology might be the key trait responsible for controlling dehydration rate essential for DT induction. Morphology and life form may be determinant traits in the adaptation of bryophytes to habitats with different water availabilities and corresponding predicted levels in the DT inducibility spectrum.
View Article and Find Full Text PDFThe Mediterranean climate is characterized by hot dry summers and frequent droughts. Mediterranean crops are frequently subjected to high evapotranspiration demands, soil water deficits, high temperatures, and photo-oxidative stress. These conditions will become more severe due to global warming which poses major challenges to the sustainability of the agricultural sector in Mediterranean countries.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2017
Diatom-dominated microphytobenthos (MPB) is the main primary producer of many intertidal and shallow subtidal environments, being therefore of critical importance to estuarine and coastal food webs. Owing to tidal cycles, intertidal MPB diatoms are subjected to environmental conditions far more variable than the ones experienced by pelagic diatoms (e.g.
View Article and Find Full Text PDFDesiccation tolerant (DT) organisms are able to withstand an extended loss of body water and rapidly resume metabolism upon rehydration. This ability, however, is strongly dependent on a slow dehydration rate. Fast dehydration affects membrane integrity leading to intracellular solute leakage upon rehydration and thereby impairs metabolism recovery.
View Article and Find Full Text PDFThe effects of dissolved inorganic carbon (DIC) availability on photosynthesis were studied in two estuarine intertidal microphytobenthos (MPB) communities and in the model diatom species Phaeodactylum tricornutum. Kinetics of DIC acquisition, measured with a liquid-phase oxygen electrode, showed higher K(1/2)(DIC) (0.31 mM) and Vm (7.
View Article and Find Full Text PDFBackground: Microphytobenthos (MPB) are the main primary producers of many intertidal and shallow subtidal environments. Although these coastal ecosystems are particularly vulnerable to anthropogenic activities, little is known on the effects of climate change variables on the structure and productivity of MPB communities. In this study, the effects of elevated temperature and CO2 on intertidal MPB biomass, species composition and photosynthetic performance were studied using a flow-through experimental life support system.
View Article and Find Full Text PDFSome species of the Lathyrus genus are among the most promising crops for marginal lands, with high resilience to drought, flood, and fungal diseases, combined with high yields and seed nutritional value. However, lack of knowledge on the mechanisms underlying its outstanding performance and methodologies to identify elite genotypes has hampered its proper use in breeding. Chlorophyll a fast fluorescence transient (JIP test), was used to evaluate water deficit (WD) resistance in Lathyrus genus.
View Article and Find Full Text PDFAll bryophytes evolved desiccation tolerance (DT) mechanisms during the invasion of terrestrial habitats by early land plants. Are these DT mechanisms still present in bryophytes that colonize aquatic habitats? The aquatic bryophyte Fontinalis antipyretica Hedw. was subjected to two drying regimes and alterations in protein profiles and sucrose accumulation during dehydration and rehydration were investigated.
View Article and Find Full Text PDFGrape berry development and ripening depends mainly on imported photosynthates from leaves, however, fruit photosynthesis may also contribute to the carbon economy of the fruit. In this study pulse amplitude modulated chlorophyll fluorescence imaging (imaging-PAM) was used to assess photosynthetic properties of tissues of green grape berries. In particular, the effect of the saturation pulse (SP) intensity was investigated.
View Article and Find Full Text PDFImaging pulse amplitude modulated (Imaging-PAM) fluorometry is a breakthrough in the study of spatial heterogeneity of photosynthetic assemblages. However, Imaging and conventional PAM uses a different technology, making comparisons between these techniques doubtful. Thereby, photosynthetic processes were comparatively assessed using conventional (Junior PAM and PAM 101) and Imaging-PAM on intertidal microphytobenthos (MPB; mud and sand) and on cork oak leaves.
View Article and Find Full Text PDFBackground And Aims: The aquatic moss Fontinalis antipyretica requires a slow rate of dehydration to survive a desiccation event. The present work examined whether differences in the dehydration rate resulted in corresponding differences in the production of reactive oxygen species (ROS) and therefore in the amount of cell damage.
Methods: Intracellular ROS production by the aquatic moss was assessed with confocal laser microscopy and the ROS-specific chemical probe 2,7-dichlorodihydrofluorescein diacetate.
The response of microalgae to photooxidative stress resulting from high light exposure is a well-studied phenomenon. However, direct analyses of photosystem II (PSII) D1 protein (the main target of photoinhibition) in diatoms are scarce. In this study, the response of the diatom model species Phaeodactylum tricornutum to short-term exposure to high light was examined and the levels of D1 protein determined immunochemically.
View Article and Find Full Text PDFThe moss Fontinalis antipyretica, an aquatic bryophyte previously described as desiccation-intolerant, is known to survive intermittent desiccation events in Mediterranean rivers. To better understand the mechanisms of desiccation tolerance in this species and to reconcile the apparently conflicting evidence between desiccation tolerance classifications and field observations, gross photosynthesis and chlorophyll a fluorescence were measured in field-desiccated bryophyte tips and in bryophyte tips subjected in the laboratory to slow, fast, and very fast drying followed by either a short (30 min) or prolonged (5 days) recovery. Our results show, for the first time, that the metabolic response of F.
View Article and Find Full Text PDFC plants are considered to be less sensitive to drought than C plants because of their CO concentrating mechanism. The C grasses, Paspalum dilatatum Poiret (NADP-ME), Cynodon dactylon (L.) Pers (NAD-ME) and Zoysia japonica Steudel (PEPCK) were compared in their response to water deficit imposed by the addition of polyethylene glycol to the nutrient solution in which they were grown.
View Article and Find Full Text PDFPhotosynthetic carbohydrate content in Setaria sphacelata var. splendida under rapidly and slowly induced water deficit and its contribution to osmotic adjustment were studied. In short-term stress experiments, a decrease in the total content of sucrose (Su) and starch (St) was observed in leaf discs submitted to stress.
View Article and Find Full Text PDF