Publications by authors named "Jorge M Caviglia"

Maternal obesity during pregnancy adversely impacts offspring health, predisposing them to chronic metabolic diseases characterized by insulin resistance, dysregulated macronutrient metabolism, and lipid overload, such as metabolic-associated fatty liver disease (MAFLD). Choline is a semi-essential nutrient involved in lipid and one-carbon metabolism that is compromised during MAFLD progression. Here, we investigated under high-fat (HF) obesogenic feeding how maternal choline supplementation (CS) influenced the hepatic lipidome of mouse offspring.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatocellular carcinoma (HCC) is a major cause of cancer deaths, primarily occurring in patients with chronic liver disease and advanced fibrosis, with hepatic stellate cells (HSCs) playing a significant role.
  • Research on mouse models showed that HSCs have a tumor-promoting function, interacting with liver cells to influence both liver cell (hepatocyte) growth and death during HCC development.
  • A shift in HSC types during liver disease progression leads to increased HCC risk, where protective mediators become less active while tumor-promoting factors gain dominance.
View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the United States and the world; with no Food and Drug Administration-approved pharmacological treatment available, it remains an area of unmet medical need. In nonalcoholic steatohepatitis (NASH), the most important predictor of clinical outcome is the fibrosis stage. Moreover, the Food and Drug Administration recommends that clinical trials for drugs to treat this disease include patients with fibrosis stage 2 or greater.

View Article and Find Full Text PDF

Maternal methyl donor supplementation during pregnancy has demonstrated lasting influence on offspring DNA methylation. However, it is unknown whether an adverse postnatal environment, such as high-fat (HF) feeding, overrides the influence of prenatal methyl donor supplementation on offspring epigenome. In this study, we examined whether maternal supplementation of choline (CS), a methyl donor, interacts with prenatal and postnatal HF feeding to alter global and site-specific DNA methylation in offspring.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAF) are a poorly characterized cell population in the context of liver cancer. Our study investigates CAF functions in intrahepatic cholangiocarcinoma (ICC), a highly desmoplastic liver tumor. Genetic tracing, single-cell RNA sequencing, and ligand-receptor analyses uncovered hepatic stellate cells (HSC) as the main source of CAF and HSC-derived CAF as the dominant population interacting with tumor cells.

View Article and Find Full Text PDF

Unlabelled: Fibrosis and cancer represent two major complications of chronic liver disease. MicroRNAs have been implicated in the development of fibrosis and cancer, thus constituting potential therapeutic targets. Here, we investigated the role of microRNA-21 (miR-21), a microRNA that has been implicated in the development of fibrosis in multiple organs and has also been suggested to act as an "oncomir.

View Article and Find Full Text PDF

Nonalcoholic steatohepatitis (NASH) is a leading cause of liver disease worldwide. However, the molecular basis of how benign steatosis progresses to NASH is incompletely understood, which has limited the identification of therapeutic targets. Here we show that the transcription regulator TAZ (WWTR1) is markedly higher in hepatocytes in human and murine NASH liver than in normal or steatotic liver.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, and the third leading cause of cancer mortality. The great majority of patients are not eligible for curative therapies, and therapeutic approaches for advanced disease show only limited efficacy. Difficulties to treat HCC are due to the heterogenous genetic alterations of HCC, profound alterations in the hepatic microenvironment, and incomplete understanding of HCC biology.

View Article and Find Full Text PDF
Article Synopsis
  • The mechanisms of sterile inflammation are not well understood, although damage-associated molecular patterns (DAMPs) like HMGB1 play a crucial role after cell death.
  • Using conditional ablation techniques, researchers found that epithelial HMGB1 is essential for promoting neutrophil recruitment in sterile inflammation, but bone marrow-derived HMGB1 is not.
  • Notably, removing hepatocyte-specific HMGB1 greatly improved survival in lethal acetaminophen cases, highlighting its potential as a therapeutic target in necrosis-related injuries without affecting other inflammatory responses like apoptosis.
View Article and Find Full Text PDF

Objective: Chemokines are known to play an important role in the pathophysiology of alcoholic hepatitis (AH), a form of acute-on-chronic liver injury frequently mediated by gut derived lipopolysaccharide (LPS). In our study, we hypothesise that chemokine CCL20, one of the most upregulated chemokines in patients with AH, is implicated in the pathogenesis of AH by mediating LPS induced liver injury.

Design: CCL20 gene expression and serum levels and their correlation with disease severity were assessed in patients with AH.

View Article and Find Full Text PDF

Increased translocation of intestinal bacteria is a hallmark of chronic liver disease and contributes to hepatic inflammation and fibrosis. Here we tested the hypothesis that the intestinal microbiota and Toll-like receptors (TLRs) promote hepatocellular carcinoma (HCC), a long-term consequence of chronic liver injury, inflammation, and fibrosis. Hepatocarcinogenesis in chronically injured livers depended on the intestinal microbiota and TLR4 activation in non-bone-marrow-derived resident liver cells.

View Article and Find Full Text PDF

Adipose triglyceride lipase (ATGL) catalyzes the first step of triacylglycerol hydrolysis in adipocytes. Abhydrolase domain 5 (ABHD5) increases ATGL activity by an unknown mechanism. Prior studies have suggested that the expression of ABHD5 is limiting for lipolysis in adipocytes, as addition of recombinant ABHD5 increases in vitro TAG hydrolase activity of adipocyte lysates.

View Article and Find Full Text PDF

Although short-term incubation of hepatocytes with oleic acid (OA) stimulates secretion of apolipoprotein B100 (apoB100), exposure to higher doses of OA for longer periods inhibits secretion in association with induction of endoplasmic reticulum (ER) stress. Palmitic acid (PA) induces ER stress, but its effects on apoB100 secretion are unclear. Docosahexaenoic acid (DHA) inhibits apoB100 secretion, but its effects on ER stress have not been studied.

View Article and Find Full Text PDF

Mutations in human CGI-58/ABHD5 cause Chanarin-Dorfman syndrome (CDS), characterized by excessive storage of triacylglycerol in tissues. CGI-58 is an alpha/beta-hydrolase fold enzyme expressed in all vertebrates. The carboxyl terminus includes a highly conserved consensus sequence (HXXXXD) for acyltransferase activity.

View Article and Find Full Text PDF

Lipolysis of stored triacylglycerols provides lipid precursors for the assembly of apolipoprotein B (apoB) lipoproteins in hepatocytes. Abhydrolase domain containing 5 (ABHD5) is expressed in liver and facilitates the lipolysis of triacylglycerols. To study the function of ABHD5 in lipoprotein secretion, we silenced the expression of ABHD5 in McA RH7777 cells using RNA interference and studied the metabolism of lipids and secretion of apoB lipoproteins.

View Article and Find Full Text PDF

The metabolism of long-chain fatty acids in brain and their incorporation into signaling molecules such as diacylglycerol and LPA and into structural components of membranes, including myelin, requires activation by long-chain acyl-CoA synthetase (ACSL). Because ACSL3 and ACSL6 are the predominant ACSL isoforms in brain, we cloned and characterized these isoforms from rat brain and identified a novel ACSL6 clone (ACSL6_v2). ACSL6_v2 and the previously reported ACSL6_v1 represent splice variants that include exon 13 or 14, respectively.

View Article and Find Full Text PDF

Long chain fatty acids are converted to acyl-CoAs by acyl-CoA synthetase (fatty acid CoA ligase: AMP forming, E.C. 6.

View Article and Find Full Text PDF