Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2024
Ecdysteroid molting hormone synthesis is directed by a pair of molting glands or Y-organs (YOs), and this synthesis is inhibited by molt-inhibiting hormone (MIH). MIH is a member of the crustacean hyperglycemic hormone (CHH) neuropeptide superfamily, which includes CHH and insect ion transport peptide (ITP). It is hypothesized that the MIH receptor is a Class A (Rhodopsin-like) G protein-coupled receptor (GPCR).
View Article and Find Full Text PDFTranscriptomes from nontraditional model organisms often harbor a wealth of unexplored data. Examining these data sets can lead to clarity and novel insights in traditional systems, as well as to discoveries across a multitude of fields. Despite significant advances in DNA sequencing technologies and in their adoption, access to genomic and transcriptomic resources for nontraditional model organisms remains limited.
View Article and Find Full Text PDFCrayfish can be used as model organisms in phylogeographic and divergence time studies if reliable calibrations are available. This study presents a comprehensive investigation into the phylogeography of the European stone crayfish () and includes samples from previously unstudied sites. Two mitochondrial markers were used to reveal evolutionary relationships among haplogroups throughout the species' distributional range and to estimate the divergence time by employing both substitution rates and geological calibration methods.
View Article and Find Full Text PDFHigh-quality RNA is an important precursor for high-throughput RNA sequencing (RNAseq) and subsequent analyses. However, the primary metric used to assess RNA quality, the RNA Integrity Number (RIN), was developed based on model bacterial and vertebrate organisms. Though the phenomenon is not widely recognized, invertebrate 28S ribosomal RNA (rRNA) is highly prone to a form of denaturation known as gap deletion, in which the subunit collapses into two smaller fragments.
View Article and Find Full Text PDFAnimals that inhabit subterranean environments often undergo various distinct phenotypic modifications (referred to as "troglomorphy") as they transition to life in perpetual darkness. However, the molecular basis behind troglomorphy remains poorly understood, particularly in regards to the mechanisms involved in the reduction and/or loss of traits at the transcriptomic level. In this study, we investigate the transcriptional basis behind vision loss in populations of cave-dwelling crustaceans.
View Article and Find Full Text PDFBackground: The underlying mechanisms and processes that prompt the colonisation of extreme environments, such as caves, constitute major research themes of evolutionary biology and biospeleology. The special adaptations required to survive in subterranean environments (low food availability, hypoxic waters, permanent darkness), and the geographical isolation of caves, nominate cave biodiversity as ideal subjects to answer long-standing questions concerning the interplay amongst adaptation, biogeography, and evolution. The present project aims to examine the phylogeographic patterns exhibited by two sympatric species of surface and cave-dwelling peracarid crustaceans (Asellus aquaticus and Niphargus hrabei), and in doing so elucidate the possible roles of isolation and exaptation in the colonisation and successful adaptation to the cave environment.
View Article and Find Full Text PDFBioluminescence is essential to the survival of many organisms, particularly in the deep sea where light is limited. Shrimp of the family Oplophoridae exhibit a remarkable mechanism of bioluminescence in the form of a secretion used for predatory defense. Three of the ten genera possess an additional mode of bioluminescence in the form of light-emitting organs called photophores.
View Article and Find Full Text PDF