Publications by authors named "Jorge Humberto Limon Pacheco"

Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated.

View Article and Find Full Text PDF

Cobalt protoporphyrin (CoPP) is a potent heme oxygenase-1 inductor that produces temporary hypophagia and chronic weight loss. A complete description of this effect and the underlying mechanisms are unknown. In this work, we challenged the ability of CoPP to produce changes in rat behavior and cellular alterations in the Nucleus Accumbens that would explain those effects.

View Article and Find Full Text PDF

Some studies have shown that silicon dioxide nanoparticles (SiO-NPs) can reach different regions of the brain and cause toxicity; however, the consequences of SiO-NPs exposure on the diverse brain cell lineages is limited. We aimed to investigate the neurotoxic effects of SiO-NP (0-100 µg/mL) on rat astrocyte-rich cultures or neuron-rich cultures using scanning electron microscopy, Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR), FTIR microspectroscopy mapping (IQ mapping), and cell viability tests. SiO-NPs were amorphous particles and aggregated in saline and culture media.

View Article and Find Full Text PDF

Quinolinic acid (QA) triggers striatal neuronal death by an excitotoxic cascade that involves oxidative stress, which in turns is tightly linked to mitochondria. Mitochondrial dysfunction is a molecular feature described in several brain pathologies. In this work, we determined whether the sulforaphane-neuroprotective effect in the rodent experimental model of Huntington's disease induced by QA is associated with mitochondrial function preservation.

View Article and Find Full Text PDF

Several studies have associated chronic arsenicism with decreases in IQ and sensory and motor alterations in humans. Likewise, studies of rodents exposed to inorganic arsenic ((i)As) have found changes in locomotor activity, brain neurochemistry, behavioral tasks, oxidative stress, and in sensory and motor nerves. In the current study, male Sprague-Dawley rats were exposed to environmentally relevant doses of (i)As (0.

View Article and Find Full Text PDF