Patients experiencing adverse drug events (ADE) from polypharmaceutical regimens present a huge challenge to modern healthcare. While computational efforts may reduce the incidence of these ADEs, current strategies are typically non-generalizable for standard healthcare systems. To address this, we carried out a retrospective study aimed at developing a statistical approach to detect and quantify potential ADEs.
View Article and Find Full Text PDFThe application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium.
View Article and Find Full Text PDFPurpose: While the beneficial effects of medications are numerous, drug-drug interactions may lead to adverse drug reactions that are preventable causes of morbidity and mortality. Our goal was to quantify the prevalence of potential drug-drug interactions in drug prescriptions at Danish hospitals, estimate the risk of adverse outcomes associated with discouraged drug combinations, and highlight the patient types (defined by the primary diagnosis of the admission) that appear to be more affected.
Methods: This cross-sectional (descriptive part) and cohort study (adverse outcomes part) used hospital electronic health records from two Danish regions (~2.