Unlabelled: Increased production of vasoconstrictive prostanoids, such as thromboxane A2 (TXA2 ), contributes to endothelial dysfunction and increased hepatic vascular tone in cirrhosis. TXA2 induces vasoconstriction by way of activation of the thromboxane-A2 /prostaglandin-endoperoxide (TP) receptor. This study investigated whether terutroban, a specific TP receptor blocker, decreases hepatic vascular tone and portal pressure in rats with cirrhosis due to carbon tetrachloride (CCl4 ) or bile duct ligation (BDL).
View Article and Find Full Text PDFBackground & Aims: Resveratrol, a polyphenol found in a variety of fruits, exerts a wide range of beneficial effects on the endothelium, regulates multiple vasoactive substances and decreases oxidative stress, factors involved in the pathophysiology of portal hypertension. Our study aimed at evaluating the effects of resveratrol on hepatic and systemic hemodynamics, hepatic endothelial dysfunction, and hepatic fibrosis in CCl₄ cirrhotic rats.
Methods: Resveratrol (10 and 20 mg/kg/day) or its vehicle was administered to cirrhotic rats for two weeks and hepatic and systemic hemodynamics were measured.
Unlabelled: Endothelial dysfunction drives vascular derangement and organ failure associated with sepsis. However, the consequences of sepsis on liver sinusoidal endothelial function are largely unknown. Statins might improve microvascular dysfunction in sepsis.
View Article and Find Full Text PDFBackground & Aims: High oxidative stress plays a major role in increasing hepatic vascular resistance in cirrhosis, by facilitating liver fibrosis and by increasing hepatic vascular tone. This study is aimed at investigating whether the use of the novel isoform of recombinant human manganese superoxide dismutase (rMnSOD) could be a new therapeutic strategy to reduce oxidative stress and portal hypertension in cirrhotic rats.
Methods: In CCl(4)- and BDL-cirrhotic rats treated with rMnSOD (i.
Background & Aims: Statins improve hepatic endothelial function and liver fibrosis in experimental models of cirrhosis, thus they have been proposed as therapeutic options to ameliorate portal hypertension syndrome. The transcription factor Kruppel-like factor 2 (KLF2) may be induced by statins in liver sinusoidal endothelial cells (SEC), orchestrating an efficient vasoprotective response. The present study aimed at characterizing whether KLF2 mediates statins-derived hepatic protection.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Most morbidity associated with the metabolic syndrome is related to vascular complications, in which endothelial dysfunction is a major pathogenic factor. However, whether NAFLD is associated with endothelial dysfunction within the hepatic vasculature is unknown.
View Article and Find Full Text PDFReduced intrahepatic nitric oxide (NO) bioavailability and increased cyclooxygenase-1 (COX-1)-derived vasoconstrictor prostanoids modulate the hepatic vascular tone in cirrhosis. We aimed at investigating the reciprocal interactions between NO and COX in the hepatic endothelium of control and cirrhotic rats. NO bioavailability (DAF-FM-DA staining), superoxide (O(2)(-)) content (DHE staining), prostanoid production (PGI(2) and TXA(2) by enzyme immunoassays) as well as COX expression (Western Blot), were determined in hepatic endothelial cells (HEC) from control and cirrhotic rats submitted to different experimental conditions: COX activation, COX inhibition, NO activation and NO inhibition.
View Article and Find Full Text PDFUnlabelled: Pathophysiological alterations in the endothelial phenotype result in endothelial dysfunction. Flow cessation, occurring during organ procurement for transplantation, triggers the endothelial dysfunction characteristic of ischemia/reperfusion injury, partly due to a reduction in the expression of the vasoprotective transcription factor Kruppel-like Factor 2 (KLF2). We aimed at (1) characterizing the effects of flow cessation and cold storage on hepatic endothelial phenotype, and (2) ascertaining if the consequences of cold stasis on the hepatic endothelium can be pharmacologically modulated, improving liver graft function.
View Article and Find Full Text PDFBackground & Aims: Increased superoxide in cirrhotic livers, by reducing nitric oxide bioavailability, contributes to increase intrahepatic vascular resistance to portal blood flow and as a consequence portal pressure. We aimed to evaluate whether a strategy directed to reduce superoxide using tempol, a small membrane permeable SOD-mimetic, is able to modulate intrahepatic nitric oxide content and reduce portal pressure in cirrhotic rats.
Methods: Superoxide and nitric oxide were evaluated in control sinusoidal endothelial cells (SEC) pre-treated with the pro-oxidant diethyldithiocarbamate (DDC) and in CCl(4)-cirrhotic rat livers treated with tempol or vehicle.
Objective: The transcription factor Kruppel-like factor 2 (KLF2) modulates the expression of multiple endothelial vasoprotective genes. In the absence of KLF2, the endothelial phenotype becomes dysfunctional. To date, blood-derived shear stress is the main physiological stimulus identified to trigger and sustain endothelial KLF2 expression.
View Article and Find Full Text PDFBackground: Vascular pathologies constitute a major cause of graft rejection after organ transplantation. Recent studies have documented an improvement in transplant outcome when organs are preserved through pulsatile perfusion; however, the underlying mechanisms of these observations are poorly characterized. We hypothesized that the temporary absence of flow occurring in the context of organ cold storage conditions disrupts endothelial vasoprotective programs, and that this consequence of stasis may be a target for pharmacological modulation.
View Article and Find Full Text PDFThe Kruppel-like factor 2 (KLF2) and Kruppel-like factor 4 (KLF4) transcription factors have recently been shown to act as critical regulators of endothelial homeostasis. While several insights have been made into the signaling mechanisms orchestrating endothelial KLF2 expression, those governing the expression of KLF4 in the vascular endothelium remain largely unknown. Here, we show that diverse vasoprotective stimuli including an atheroprotective shear stress waveform, simvastatin, and resveratrol induce the expression of KLF4 in cultured human endothelial cells.
View Article and Find Full Text PDFAims: Resveratrol activates Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase which modulates metabolic homeostasis and improves several pathophysiological features present in diseases of ageing. In particular, it has been shown that SIRT1 activation improves endothelial dysfunction and suppresses vascular inflammation, two central pathophysiological processes involved in the initiation and progression of cardiovascular disease. The downstream targets of SIRT1 activation in this context, however, remain poorly defined.
View Article and Find Full Text PDFBiomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential.
View Article and Find Full Text PDFUnlabelled: In cirrhotic livers, decreased nitric oxide (NO) bioavailability is a major factor increasing intrahepatic vascular tone. In several vascular disorders, an increase in superoxide (O(2) (-)) has been shown to contribute to reduced NO bioavailability through its reaction with NO to form peroxynitrite. This study was aimed to test the hypothesis that, in cirrhotic livers, increased O(2) (-), by reacting with NO, reduces NO bioavailability.
View Article and Find Full Text PDFBackground & Aims: Increased hepatic vascular resistance in cirrhosis is in part due to reduced nitric oxide (NO) bioavailability. This is related to insufficient NO synthesis from endothelial nitric oxide synthase and to enhanced NO scavenging by superoxide radicals (O(2)(-)). Nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase is an important source of O(2)(-) that increases vascular tone in different cardiovascular disorders.
View Article and Find Full Text PDFBackground/aims: Cyclooxygenase-1 (COX-1) is overexpressed in sinusoidal endothelial cells (SEC) of cirrhotic rat livers, and through an enhanced production of vasoconstrictor prostanoids contributes to increase intrahepatic resistance. Our study was aimed at investigating the role of enhanced AA bioavailability modulating the hepatic vascular tone of cirrhotic livers and identifying which prostanoid is involved.
Methods: SEC isolated from control and cirrhotic rat livers were incubated with AA, methoxamine or vehicle.
Background: Recent studies have shown the presence of vascular endothelial growth factor (VEGF)-dependent splanchnic angiogenesis in experimental models of portal hypertension, and the role of such neovascularisation on the development of both portosystemic collaterals and hyperdynamic splanchnic circulation. However, the mechanisms modulating angiogenesis in portal hypertension are unknown. Experimental evidence indicates that NAD(P)H oxidase is required for VEGF-induced angiogenesis.
View Article and Find Full Text PDFBackground/aims: The pathophysiological significance of heme oxygenase-1 up-regulation in portal hypertension is not completely understood. In this study, we determined the role of heme oxygenase-1 on oxidative stress, inflammation, angiogenesis, and splanchnic hemodynamics in rats with portal hypertension induced by partial portal vein ligation.
Methods: Rats were treated with the heme oxygenase inhibitor SnMP or vehicle for 7 days.