Purpose: A medical imaging informatics infrastructure (MIII) platform is an organized method of selecting tools and synthesizing data from HIS/RIS/PACS/ePR systems with the aim of developing an imaging-based diagnosis or treatment system. Evaluation and analysis of these systems can be made more efficient by designing and implementing imaging informatics simulators. This tutorial introduces the MIII platform and provides the definition of treatment/diagnosis systems, while primarily focusing on the development of the related simulators.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
March 2011
Purpose: Molecular imaging is the visualization and identification of specific molecules in anatomy for insight into metabolic pathways, tissue consistency, and tracing of solute transport mechanisms. This paper presents the Molecular Imaging Data Grid (MIDG) which utilizes emerging grid technologies in preclinical molecular imaging to facilitate data sharing and discovery between preclinical molecular imaging facilities and their collaborating investigator institutions to expedite translational sciences research. Grid-enabled archiving, management, and distribution of animal-model imaging datasets help preclinical investigators to monitor, access and share their imaging data remotely, and promote preclinical imaging facilities to share published imaging datasets as resources for new investigators.
View Article and Find Full Text PDFDegenerated spinal disc and spinal stenosis are common problems requiring decompressive spinal surgery. Traditional open spinal discectomy is associated with significant tissue trauma, greater morbidity/complications, scarring, often longer term of convalescence, and even destabilization of the spine. Therefore, the pursuit of less traumatic minimally invasive spine surgery (MISS) began.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
May 2010
Purpose: This paper presents the concept of bridging the gap between diagnostic images and image-assisted surgical treatment through the development of a one-stop multimedia electronic patient record (ePR) system that manages and distributes the real-time multimodality imaging and informatics data that assists the surgeon during all clinical phases of the operation from planning Intra-Op to post-care follow-up. We present the concept of this multimedia ePR for surgery by first focusing on image-assisted minimally invasive spinal surgery as a clinical application.
Methods: Three clinical phases of minimally invasive spinal surgery workflow in Pre-Op, Intra-Op, and Post-Op are discussed.
This paper describes a picture archiving and communication system (PACS) tool based on Web technology that remotely manages medical images between a PACS archive and remote destinations. Successfully implemented in a clinical environment and also demonstrated for the past 3 years at the conferences of various organizations, including the Radiological Society of North America, this tool provides a very practical and simple way to manage a PACS, including off-site image distribution and disaster recovery. The application is robust and flexible and can be used on a standard PC workstation or a Tablet PC, but more important, it can be used with a personal digital assistant (PDA).
View Article and Find Full Text PDFComput Med Imaging Graph
September 2007
The need for quantified knowledge and decision-support tools to handle complex radiation therapy (RT) imaging and informatics data is becoming steadily apparent. Lessons can be learned from current CAD applications in radiology. This paper proposes a methodology to develop this quantified knowledge and decision-support tools to facilitate RT treatment planning.
View Article and Find Full Text PDFRationale And Objectives: Most health care facilities currently struggle with protecting medical data privacy, misidentification of patients, and long patient waiting times. This article demonstrates a novel system for a clinical environment using wireless tracking and facial biometric technologies to automatically monitor and identify staff and patients to address these problems.
Materials And Methods: The design of the location tracking and verification system (LTVS) was based on a workflow study which was performed to observe the physical location and movement of patient and staff at the Healthcare Consultation Center II (HCC II) running hospital information systems, radiology information systems, picture archive and communication systems, and a voice recognition system.
J Digit Imaging
April 2007
The expectation of rapid image retrieval from PACS users contributes to increased information technology (IT) infrastructure investments to increase performance as well as continuing demands upon PACS administrators to respond to "slow" system performance. The ability to provide predicted delivery times to a PACS user may curb user expectations for "fastest" response especially during peak hours. This, in turn, could result in a PACS infrastructure tailored to more realistic performance demands.
View Article and Find Full Text PDF