Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change.
View Article and Find Full Text PDFReef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals.
View Article and Find Full Text PDFRiver plumes deliver large quantities of nutrients to oligotrophic oceans, often resulting in significant CO(2) drawdown. To determine the relationship between expression of the major gene in carbon fixation (large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO) and CO(2) dynamics, we evaluated rbcL mRNA abundance using novel quantitative PCR assays, phytoplankton cell analyses, photophysiological parameters, and pCO(2) in and around the Mississippi River plume (MRP) in the Gulf of Mexico. Lower salinity (30-32) stations were dominated by rbcL mRNA concentrations from heterokonts, such as diatoms and pelagophytes, which were at least an order of magnitude greater than haptophytes, alpha-Synechococcus or high-light Prochlorococcus.
View Article and Find Full Text PDFPhotochem Photobiol
November 2007
The effects of increased UV radiation (UV-B [280-320 nm] + UV-A [320-400 nm]; hereafter UVR) on the growth, production of photosynthetic pigments and photoprotective mycosporine-like amino acids (MAAs) were studied in the threatened Caribbean coral Acropora cervicornis transplanted from 20 to 1 m depth in La Parguera, Puerto Rico. The UVR exposure by the transplanted colonies was significantly higher than that at 20 m, while photosynthetically active radiation (PAR) only increased by 9%. Photosynthetic pigments, quantified with HPLC, as well as linear extension rates and skeletal densities, were significantly reduced 1 month after transplantation to 1 m depth, while MAAs increased significantly despite immediate paling experienced by transplanted colonies.
View Article and Find Full Text PDFA pilot field experiment to assess the relationship between traditional biogeochemical rate measurements and transcriptional activity of microbial populations was carried out at the LEO 15 site off Tuckerton, N.J. Here, we report the relationship between photosynthetic capacity of autotrophic plankton and transcriptional activity of the large subunit gene (rbcL) for ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme responsible for primary carbon fixation during photosynthesis.
View Article and Find Full Text PDFResponse of nitrous oxide N20 sediment/air flux to nitrogen addition was assessed in mangrove (Rhizophora mangle) sediments. Fluxes were enhanced with both ammonium and nitrate loading. Greatest fluxes (52 micromol m(-2) h(-1)) were obtained with ammonium addition and saturation was achieved with additions of 0.
View Article and Find Full Text PDF