Publications by authors named "Jorge Chanona-Perez"

Background: Cervical Cancer (CC) is a worldwide public health concern associated with genetic alterations, among these the gain of the 19q chromosome harboring the Pregnancy Specific Glycoproteins (PSG) gene family. These proteins play a critical role in pregnancy, with participation in immunotolerance, angiogenesis, and invasion processes, which are also observed in carcinogenesis. The aim of this study was to determine the molecular alterations of PSG1 and its relationship with CC.

View Article and Find Full Text PDF
Article Synopsis
  • Edible films (EFs) made from a chitosan-zein mixture and three essential oils (anise, orange, and cinnamon) were developed to improve food safety and longevity.
  • The addition of essential oils significantly changed the films' color properties, made them transparent, and improved their physical characteristics, particularly with anise oil showing lower water vapor permeability and higher hardness.
  • The films demonstrated the ability to inhibit certain bacterial growth better than traditional films, suggesting their potential as effective food coatings to extend shelf life.
View Article and Find Full Text PDF

The peroxyformic process is based on the action of a carboxylic acid (mainly formic acid) and the corresponding peroxyacid. The influences of processing time (60-180 min), formic acid concentration (80-95%), temperature (60-80°C), and hydrogen peroxide concentration (2-4%) on peroxyformic pulping of agave leaves were studied by surface response methodology using a face-centered factorial design. Empirical models were obtained for the prediction of yield, κ number (KN) and pulp viscosity as functions of the aforementioned variables.

View Article and Find Full Text PDF

The objective of this work was to obtain Spirulina (Arthrospira maxima) nanoparticles (SNPs) by using high-impact mechanical milling and to characterize them by electron microscopy and spectroscopy techniques. The milling products were analyzed after various processing times (1-4 h), and particle size distribution and number mean size (NMS) were determined by analysis of high-resolution scanning electron microscopic images. The smallest particles are synthesized after 3 h of milling, had an NMS of 55.

View Article and Find Full Text PDF

Carbon nanotubes (CNT) have proven to be materials with great potential for the construction of biosensors. Development of fast, simple, and low cost biosensors to follow reactions in bioprocesses, or to detect food contaminants such as toxins, chemical compounds, and microorganisms, is presently an important research topic. This report includes microscopy and spectroscopy to characterize raw and chemically modified multiwall carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition with the intention of using them as the active transducer in bioprocessing sensors.

View Article and Find Full Text PDF

Recently, the use of different types of natural fibers to produce paper and textiles from agave plants has been proposed. Agave atrovirens can be a good source of cellulose and lignin; nevertheless, the microstructural changes that happen during delignification have scarcely been studied. The aim of this work was to study the microstructural changes that occur during the delignification of agave fibers by means of microscopy techniques and image analysis.

View Article and Find Full Text PDF

The effect of mechanical damage on wheat starch granules surface, at a microstructural level, was investigated by scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM), and image textural analysis. The SEM and ESEM images of the native sample showed that the starch granules had smooth, flat surfaces and smooth edges. The samples with higher damaged starch content exhibited granular distortion, irregularity and less uniformity.

View Article and Find Full Text PDF

After 6 months of operation a long-term biofilter was stopped for two weeks and then it was started up again for a second experimental period of almost 1.3 years, with high toluene loads and submitted to several physical and chemical treatments in order to remove excess biomass that could affect the reactor's performance due to clogging, whose main effect is a high pressure drop. Elimination capacity and removal efficiency were determined after each treatment.

View Article and Find Full Text PDF