Collagen cleavage by matrix metalloproteinase (MMP) is considered a major cause of dental resins long term failure. Most MMP inhibitors display significant toxicity and are unsuitable for dental resins' applications. Here we report a study of a new class of inhibitors that display the unique property of being co-polymerizable with other vinyl compounds present in commercial dental resins, limiting their release and potential toxicity.
View Article and Find Full Text PDFSurface properties of composites such as roughness and color impact periodontal health and aesthetic outcomes. Novel bulk-fill composites with improved functionality are being introduced and, in light of the existing variety of finishing/polishing procedures, research of their surface properties is warranted. Sixty discs were prepared from bulk-fill composites (Filtek™ Bulk Fill Posterior Restorative and Fill-Up™) and incremental-fill Filtek™ Z250.
View Article and Find Full Text PDFMatrix metalloproteinases are enzymes that degrade the extracellular matrix. They have different substrates but similar structural organization. Matrix metalloproteinases are involved in many physiological and pathological processes and there is a need to develop inhibitors for these enzymes in order to modulate the degradation of the extracellular matrix (ECM).
View Article and Find Full Text PDFThe extracellular matrix (ECM) is a macromolecules network, in which the most abundant molecule is collagen. This protein in triple helical conformation is highly resistant to proteinases degradation, the only enzymes capable of degrading the collagen are matrix metalloproteinases (MMPs). This resistance and maintenance of collagen, and consequently of ECM, is involved in several biological processes and it must be strictly regulated by endogenous inhibitors (TIMPs).
View Article and Find Full Text PDFAn important feature in dentistry is teeth gloss. During an intervention, the doctor applies a resin and a polishing to achieve the lowest roughness and the highest gloss possible. This work aims to evaluate the effect of four polishing protocols in teeth surface roughness and gloss when combined with two different resins and eventually indicate the best combination (treatment).
View Article and Find Full Text PDFObjectives: This study aims to evaluate the cytocompatibility of three provisional restoration materials and predict neurotoxic potential of their monomers. These materials are Tab 2000® (methyl methacrylate based), ProTemp 4™ (bis-acrylic based) and Structur 3® (urethane dimethacrylate based).
Materials And Methods: Resin samples were incubated in a cell culture medium and the cytotoxic effects of these extracts were studied in 3T3 fibroblast cells through MTT and crystal violet assays as well as ROS assessment.
During wine fermentations, Saccharomyces cerevisiae starts to excrete antimicrobial peptides (AMPs) into the growth medium that induce death of non-Saccharomyces yeasts at the end of exponential growth phase (24-48 h). Those AMPs were found to derive from the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). On the other hand, the early death of non-Saccharomyces yeasts during wine fermentations was also found to be mediated by a cell-to-cell contact mechanism.
View Article and Find Full Text PDFWe recently found that Saccharomyces cerevisiae (strain CCMI 885) secretes antimicrobial peptides (AMPs) derived from the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) that are active against various wine-related yeast and bacteria. Here, we show that several other S. cerevisiae strains also secrete natural biocide fractions during alcoholic fermentation, although at different levels, which correlates with the antagonistic effect exerted against non-Saccharomyces yeasts.
View Article and Find Full Text PDFThe roles of cell-to-cell contact and antimicrobial peptides in the early death of Lachanchea thermotolerans CBS2803 during anaerobic, mixed-culture fermentations with Saccharomyces cerevisiae S101 were investigated using a commercially available, double-compartment fermentation system separated by cellulose membranes with different pore sizes, i.e. 1000 kDa for mixed- and single-culture fermentations, and 1000 and 3.
View Article and Find Full Text PDFRecently, the scientific community became aware of the potential ability of nanoparticles to cause toxicity in living organisms. Therefore, many of the implications for aquatic ecosystems and its effects on living organisms are still to be evaluated and fully understood. In this study, the toxicity of nanodiamonds (NDs) was assessed in the freshwater bivalve (Corbicula fluminea) following exposure to different nominal concentrations of NDs (0.
View Article and Find Full Text PDFSaccharomyces cerevisiae plays a primordial role in alcoholic fermentation and has a vast worldwide application in the production of fuel-ethanol, food and beverages. The dominance of S. cerevisiae over other microbial species during alcoholic fermentations has been traditionally ascribed to its higher ethanol tolerance.
View Article and Find Full Text PDFMolecularly imprinted polymers (MIPs) of poly(ethylene glycol dimethacrylate) and poly(N-isopropylacrylamide-co-ethylene glycol dimethacrylate) were synthesized for the first time in supercritical carbon dioxide (scCO(2)), using Boc-L-tryptophan as template. Supercritical fluid technology provides a clean and one-step synthetic route for the preparation of affinity polymeric materials with sensing capability for specific molecules. The polymeric materials were tested as stationary HPLC phases for the enantiomeric separation of L- and D-tryptophan.
View Article and Find Full Text PDFThe physiological roles of insulin and nitric oxide (NO) have been recently recognized by several studies. A diversity of chemical modifications of insulin is reported both in vivo and in vitro. S-nitrosation, the covalent linkage of NO to cysteine free thiol is recognized as an important post-translational regulation in many proteins.
View Article and Find Full Text PDFThe aldehyde oxidoreductase from Desulfovibrio gigas belongs to the family of molybdenum hydroxylases. Besides a molybdenum cofactor which constitutes their active site, these enzymes contain two [2Fe-2S](2+,1+) clusters which are believed to transfer the electrons provided by the substrate to an acceptor which is either a FAD group or an electron-transferring protein. When the three metal centers of D.
View Article and Find Full Text PDFCorrelation of the g-tensor of a paramagnetic active center of a protein with its structure provides a unique experimental information on the electronic structure of the metal site. To address this problem, we made solid films containing metalloprotein (Desulfovibrio gigas cytochrome c(3)) microcrystals. The microcrystals in a liquid crystalline polymer medium (water/hydroxypropylcellulose) were partially aligned by a shear flow.
View Article and Find Full Text PDFWe report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D.
View Article and Find Full Text PDFBackground: A V-pattern esotropia with bilateral overaction of the inferior oblique (IO) is a common finding. The clinical characteristics of this condition in a large series are not available. Also, data is lacking about the surgical outcome of graded bilateral inferior oblique recessions.
View Article and Find Full Text PDF