Proc Natl Acad Sci U S A
December 2009
Gamma oscillations in the olfactory bulb can be produced as an interaction of subthreshold oscillations (STOs) in the mitral cells (MCs) with inhibitory granule cells (GCs). The mechanism does not require that the GCs spike, and we work in a regime in which the MCs fire at rates lower than the fast gamma rhythm they create. The frequency of the network is that of the STOs, allowing the gamma to be modulated in amplitude with only small changes in frequency.
View Article and Find Full Text PDFOlfactory system oscillations play out with beautiful temporal and behavioral regularity on the oscilloscope and seem to scream 'meaning'. Always there is the fear that, although attractive, these symbols of dynamic regularity might be just seductive epiphenomena. There are now many studies that have isolated some of the neural mechanisms involved in these oscillations, and recent work argues that they are functional and even necessary at the physiological and cognitive levels.
View Article and Find Full Text PDFRecently developed methods for estimating directionality in the coupling between oscillators were tested on experimental time series data from electroreceptors of paddlefish, because each electroreceptor contains two distinct types of noisy oscillators. One type of oscillator is in the sensory epithelia, and another type is in the terminals of afferent neurons. Based on morphological organization and our previous work, we expected unidirectional coupling, whereby epithelial oscillations synaptically influence the spiking oscillators of afferent neurons.
View Article and Find Full Text PDF