Publications by authors named "Jorge Bernal Bernabe"

The growing availability of mobile devices has lead to an arising development of smart cities services that share a huge amount of (personal) information and data. Without accurate and verified management, they could become severe back-doors for security and privacy. In this paper, we propose a smart city infrastructure able to integrate a distributed privacy-preserving identity management solution based on attribute-based credentials (p-ABC), a user-centric Consent Manager, and a GDPR-based Access Control mechanism so as to guarantee the enforcement of the GDPR's provisions.

View Article and Find Full Text PDF

The distribution of Internet of Things (IoT) devices in remote areas and the need for network resilience in such deployments is increasingly important in smart spaces covering scenarios, such as agriculture, forest, coast preservation, and connectivity survival against disasters. Although Low-Power Wide Area Network (LPWAN) technologies, like LoRa, support high connectivity ranges, communication paths can suffer from obstruction due to orography or buildings, and large areas are still difficult to cover with wired gateways, due to the lack of network or power infrastructure. The proposal presented herein proposes to mount LPWAN gateways in drones in order to generate airborne network segments providing enhanced connectivity to sensor nodes wherever needed.

View Article and Find Full Text PDF

IoT systems can be leveraged by Network Function Virtualization (NFV) and Software-Defined Networking (SDN) technologies, thereby strengthening their overall flexibility, security and resilience. In this sense, adaptive and policy-based security frameworks for SDN/NFV-aware IoT systems can provide a remarkable added value for self-protection and self-healing, by orchestrating and enforcing dynamically security policies and associated Virtual Network Functions (VNF) or Virtual network Security Functions (VSF) according to the actual context. However, this security orchestration is subject to multiple possible inconsistencies between the policies to enforce, the already enforced management policies and the evolving status of the managed IoT system.

View Article and Find Full Text PDF

Despite the advantages that the Internet of Things (IoT) will bring to our daily life, the increasing interconnectivity, as well as the amount and sensitivity of data, make IoT devices an attractive target for attackers. To address this issue, the recent Manufacturer Usage Description (MUD) standard has been proposed to describe network access control policies in the manufacturing phase to protect the device during its operation by restricting its communications. In this paper, we define an architecture and process to obtain and enforce the MUD restrictions during the bootstrapping of a device.

View Article and Find Full Text PDF

Privacy enhancing technologies (PETs) allow to achieve user's transactions unlinkability across different online Service Providers. However, current PETs fail to guarantee unlinkability against the Identity Provider (IdP), which becomes a single point of failure in terms of privacy and security, and therefore, might impersonate its users. To address this issue, OLYMPUS EU project establishes an interoperable framework of technologies for a distributed privacy-preserving identity management based on cryptographic techniques that can be applied both to online and offline scenarios.

View Article and Find Full Text PDF

The increase of Software Defined Networks (SDN) and Network Function Virtualization (NFV) technologies is bringing many security management benefits that can be exploited at the edge of Internet of Things (IoT) networks to deal with cyber-threats. In this sense, this paper presents and evaluates a novel policy-based and cyber-situational awareness security framework for continuous and dynamic management of Authentication, Authorization, Accounting (AAA) as well as Channel Protection virtual security functions in IoT networks enabled with SDN/NFV. The virtual AAA, including network authenticators, are deployed as VNF (Virtual Network Function) dynamically at the edge, in order to enable scalable device's bootstrapping and managing the access control of IoT devices to the network.

View Article and Find Full Text PDF

As we get into the Internet of Things era, security and privacy concerns remain as the main obstacles in the development of innovative and valuable services to be exploited by society. Given the Machine-to-Machine (M2M) nature of these emerging scenarios, the application of current privacy-friendly technologies needs to be reconsidered and adapted to be deployed in such global ecosystem. This work proposes different privacy-preserving mechanisms through the application of anonymous credential systems and certificateless public key cryptography.

View Article and Find Full Text PDF