Brazil is the fourth largest producer of plastic waste in the world, but studies on pollution of rivers and estuaries by microplastics are still scarce. This study is located in the state of Bahia (Northeast region) in ten estuarine environments around Todos dos Santos Bay (TDB), the largest Brazilian bay, where more than 3 million Brazilians live. The aim of the study was the evaluation of the input of microplastics into the TSB by river.
View Article and Find Full Text PDFMicroplastics have been studied in sediments from coastal and aquatic environments, but contamination of mangrove soils is still relatively unknown in most mangroves around the world. In this study, the presence of microplastics was investigated in six mangrove soils around the Todos Santos Bay (TSB), the largest and most important navigable bay on the Brazilian coast. Samples were collected at three depths (surface, 10 cm, and 30 cm) at three different distances from the lower tidal area.
View Article and Find Full Text PDFSci Rep
January 2021
Biochar from sewage sludge is a low-cost sorbent that may be used for several environmental functions. This study evaluates the induced effects of pyrolysis temperature on the physicochemical characteristics of sewage sludge (SS) biochar produced at 350 (SSB), 450 (SSB) and 600 (SSB), based on the metal enrichment index, metal mobility index (MMI), and potential ecological risk index (PERI) of Cd, Cu, Pb, and Zn. Increased pyrolysis temperature reduced the biochar concentration of elements that are lost as volatile compounds (C, N, H, O, and S), while the concentration of stable aromatic carbon, ash, alkalinity, some macro (Ca, Mg, PO, and KO) and micronutrients (Cu and Zn), and toxic elements such as Pb and Cd increased.
View Article and Find Full Text PDFBetter understanding of the processes controlling arsenic bioavailability in the rhizosphere is important to enhance plant arsenic accumulation by hyperaccumulators. This greenhouse experiment was conducted to evaluate the chemical characteristics of the rhizosphere of two arsenic hyperaccumulators Pterisvittata and Pterisbiaurita. They were grown for 8 weeks in rhizopots containing arsenic-contaminated soils (153 and 266 mg kg(-1) arsenic).
View Article and Find Full Text PDFPhytoremediation, an emerging, plant-based technology for the removal of toxic contaminants from soil and water, has been receiving increased attention. The prerequisite for successful phytoremediation is the existence of hyperaccumulator plants. Designed to search for new arsenic (As) hyperaccumulators, an experiment was conducted under greenhouse conditions in a completely randomized design with four replications.
View Article and Find Full Text PDF