Publications by authors named "Jorge Anibal Boscoboinik"

This study investigates the oxidation behavior of CuPt(100) in CO using a combination of ambient-pressure X-ray photoelectron spectroscopy, mass spectroscopy, and density functional theory modeling. Our in situ measurements reveal the simultaneous oxidation and reduction of CuO due to the opposing effects of atomic oxygen and CO generated from dissociative CO adsorption, leading to a dynamic equilibrium state of simultaneously occurring redox reactions. Complementary atomistic calculations elucidate the inhibitory effects of subsurface Pt enrichment and the counteracting roles of CO and CO in surface oxidation and reduction.

View Article and Find Full Text PDF

Surfactants are widely used in the synthesis of nanoparticles, as they have a remarkable ability to direct their growth to obtain well-defined shapes and sizes. However, their post-synthesis removal is a challenge, and the methods used often result in morphological changes that defeat the purpose of the initial controlled growth. Moreover, after the removal of surfactants, the highly active surfaces of nanomaterials may undergo structural reconstruction by exposure to a different environment.

View Article and Find Full Text PDF

The microscopic mechanisms underpinning the spontaneous surface passivation of metals from ubiquitous water have remained largely elusive. Here, using in situ environmental electron microscopy to atomically monitor the reaction dynamics between aluminum surfaces and water vapor, we provide direct experimental evidence that the surface passivation results in a bilayer oxide film consisting of a crystalline-like Al(OH) top layer and an inner layer of amorphous AlO. The Al(OH) layer maintains a constant thickness of ~5.

View Article and Find Full Text PDF

The Mars-van Krevelen mechanism is the foundation for oxide-catalyzed oxidation reactions and relies on spatiotemporally separated redox steps. Herein, we demonstrate the tunability of this separation with peroxide species formed by excessively adsorbed oxygen, thereby modifying the catalytic activity and selectivity of the oxide. Using CuO as an example, we show that a surface layer of peroxide species acts as a promotor to significantly enhance CuO reducibility in favor of H oxidation but conversely as an inhibitor to suppress CuO reduction against CO oxidation.

View Article and Find Full Text PDF

Dynamic restructuring of bimetallic catalysts plays a crucial role in their catalytic activity and selectivity. In particular, catalyst pretreatment with species such as carbon monoxide and oxygen has been shown to be an effective strategy for tuning the surface composition and morphology. Mechanistic and kinetic understanding of such restructuring is fundamental to the chemistry and engineering of surface active sites but has remained challenging due to the large structural, chemical, and temporal degrees of freedom.

View Article and Find Full Text PDF

Using ambient-pressure X-ray photoelectron spectroscopy and Auger electron spectroscopy to monitor the reduction of CuO in H, we identify the formation of an intermediate, oxygen-deficient CuO phase and its progressive inward growth into the deeper region of the oxide. Complemented by atomistic modeling, we show that the oxygen-deficient CuO formation occurs via molecular H adsorption at the CuO surface, which results in the loss of lattice oxygen from the formation of HO molecules that desorb spontaneously from the oxide surface. The resulting oxygen-deficient CuO is a stable intermediate that persists before the CuO is fully reduced to metallic Cu.

View Article and Find Full Text PDF

This is the first report of molybdenum carbide-based electrocatalyst for sulfur-based sodium-metal batteries. MoC/Mo C is in situ grown on nitrogen-doped carbon nanotubes in parallel with formation of extensive nanoporosity. Sulfur impregnation (50 wt% S) results in unique triphasic architecture termed molybdenum carbide-porous carbon nanotubes host (MoC/Mo C@PCNT-S).

View Article and Find Full Text PDF

Surface characterization is critical for understanding the processes used for preparing catalysts, sorbents, and membranes. Nonthermal plasma (NTP) is a process that achieves high reactivity at low temperatures and is used to tailor the surface properties of materials. In this work, we combine the capabilities of infrared reflection absorption spectroscopy (IRRAS) with NTP for the interrogation of zeolitic imidazolate framework-8 (ZIF-8) thin films to probe modifications in the material induced by oxygen and nitrogen plasmas.

View Article and Find Full Text PDF

Confined nanosized spaces at the interface between a metal and a seemingly inert material, such as a silicate, have recently been shown to influence the chemistry at the metal surface. In prior work, we observed that a bilayer (BL) silica on Ru(0001) can change the reaction pathway of the water formation reaction (WFR) near room temperature when compared to the bare metal. In this work, we looked at the effect of doping the silicate with Al, resulting in a stoichiometry of AlSiO.

View Article and Find Full Text PDF

Silicates are the most abundant materials in the earth's crust. In recent years, two-dimensional (2D) versions of them grown on metal supports (known as bilayer silicates) have allowed their study in detail down to the atomic scale. These structures are self-containing.

View Article and Find Full Text PDF

This is the first report of successful potassium metal battery anode cycling with an aluminum-based rather than copper-based current collector. Dendrite-free plating/stripping is achieved through improved electrolyte wetting, employing an aluminum-powder-coated aluminum foil "Al@Al," without any modification of the support surface chemistry or electrolyte additives. The reservoir-free Al@Al half-cell is stable at 1000 cycles (1950 h) at 0.

View Article and Find Full Text PDF

Charge transfer between dissimilar atoms is an essential step for many chemical processes such as corrosion and heterogeneous catalysis, but directly probing the charge transfer has been a challenge. Using the oxygen-copper system as an example, we show that synchrotron-based ambient pressure X-ray photoelectron spectroscopy can be employed to monitor the charge transfer between adsorbates and metal surfaces. It is shown that oxygen chemisorption on Cu surfaces results in an Auger process that differs from the photoexcitation-induced Coster-Kroning transition and can be used to derive the degree of charge transfer in combination with ab initio calculations.

View Article and Find Full Text PDF

The potential for tuning the electronic structure of materials to control reactivity and selectivity in heterogenous catalysis has driven interest in ultrathin metal films which may differ from their bulk form. Herein, a 1-atomic layer Ag film on Pd(111) (Ag/Pd(111)) is demonstrated to have dramatically different reactivity towards formic acid compared to bulk Ag. Formic acid decomposition is of interest as a source of H for fuel cell applications and modification of Pd by Ag reduces poisoning by CO and increases the selectivity for H formation.

View Article and Find Full Text PDF

Using ambient-pressure X-ray photoelectron spectroscopy, here we report the real-time monitoring of dynamic surface composition evolution of CuAu(100) in response to the imposed environmental stimuli. Segregation of Au to the pristine surface under ultrahigh vacuum annealing leads to the phase separation with pure Au at the surface and alloyed Au in the subsurface. Upon switching to an oxidizing atmosphere, oxygen adsorption drives the surface segregation of Cu along with inward migration of pure Au to the subsurface.

View Article and Find Full Text PDF

Surface and subsurface are commonly considered as separate entities because of the difference in the bonding environment and are often investigated separately due to the experimental challenges in differentiating the surface and subsurface effects. Using in-situ atomic-scale transmission electron microscopy to resolve the surface and subsurface at the same time, we show that the hydrogen-CuO surface reaction results in structural oscillations in deeper atomic layers via the cycles of ordering and disordering of oxygen vacancies in the subsurface. Together with atomistic calculations, we show that the structural oscillations in the subsurface are induced by the hydrogen oxidation-induced cyclic loss of oxygen from the oxide surface.

View Article and Find Full Text PDF

Limited understanding of the factors influencing the yield of carbon nanotubes (CNTs) relative to the number of catalyst particles remains an important barrier to their large-scale production with high quality, and to tailoring CNT properties for applications. This lack of understanding is evident in the frequent use of Edisonian approaches to give high-yield CNT growth, and in the sometimes-confusing influence of trace residues on the reactor walls. In order to create conditions wherein CNT yield is reproducible and to enable large-scale and reliable CNT synthesis, it is imperative to understand-fundamentally-how these common practices impact catalytic activity and thus CNT number density.

View Article and Find Full Text PDF

Surface segregation, restructuring, and sintering phenomena in size-selected copper-nickel nanoparticles (NPs) supported on silicon dioxide substrates were systematically investigated as a function of temperature, chemical state, and reactive gas environment. Using near-ambient pressure (NAP-XPS) and ultrahigh vacuum X-ray photoelectron spectroscopy (XPS), we showed that nickel tends to segregate to the surface of the NPs at elevated temperatures in oxygen- or hydrogen-containing atmospheres. It was found that the NP pretreatment, gaseous environment, and oxide formation free energy are the main driving forces of the restructuring and segregation trends observed, overshadowing the role of the surface free energy.

View Article and Find Full Text PDF

The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C.

View Article and Find Full Text PDF

Ultrathin Fe-doped silicate films were prepared on a Ru(0001) surface and, as a function of the Fe/Si ratio, structurally characterized by low-energy electron diffraction, X-ray photoelectron spectroscopy, infrared reflection-absorption spectroscopy, and scanning tunneling microscopy. Density functional theory (DFT) was used to identify the atomic structure. The results show that uniform substitution of Si by Fe in the silicate bilayer frame is thermodynamically unfavorable: the film segregates into a pure silicate and an Fe-silicate phase.

View Article and Find Full Text PDF

Topological defects in two-dimensional materials such as graphene are considered as a tool for tailoring their physical properties. Here, we studied defect structures on a single-layer silica (silicatene) supported on Ru(0001) using a low energy electron diffraction, scanning tunneling microscopy, infrared reflection-absorption spectroscopy, and photoelectron spectroscopy. The results revealed easy formation of periodic defect structures, which were previously predicted for graphene on a theoretical ground, yet experimentally unrealized.

View Article and Find Full Text PDF

The atomic structure of thin silica films grown over a Ru(0001) substrate was studied by X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, low energy electron diffraction, helium ion scattering spectroscopy, CO temperature programmed desorption, and scanning tunneling microscopy in combination with density functional theory calculations. The films were prepared by Si vapor deposition and subsequent oxidation at high temperatures. The silica film first grows as a monolayer of corner-sharing [SiO(4)] tetrahedra strongly bonded to the Ru(0001) surface through the Si-O-Ru linkages.

View Article and Find Full Text PDF