Publications by authors named "Jorge Almiro Pinto Paiva"

Renewable energy resources such as biomass are crucial for a sustainable global society. Trees are a major source of lignocellulosic biomass, which can vary in response to different environmental factors owing to epigenetic regulation, such as DNA C-methylation. To investigate the effects of DNA methylation on plant development and wood formation, and its impacts on gene expression, with a focus on secondary cell wall (SCW)-associated genes, Salix purpurea plantlets were cloned from buds derived from a single hybrid tree for both treatment and control conditions.

View Article and Find Full Text PDF

Introduction: DNA methylation plays major roles in the epigenetic regulation of gene expression, transposon and transcriptional silencing, and DNA repair, with implications in developmental processes and phenotypic plasticity. Relevantly for woody species, DNA methylation constitutes a regulative layer in cell wall dynamics associated with xylogenesis. The use of methyltransferase and/or demethylase inhibitors has been proven informative to shed light on the methylome dynamics behind the regulation of these processes.

View Article and Find Full Text PDF

The transcriptome comparison of two oak species reveals possible candidates accounting for the exceptionally thick and pure cork oak phellem, such as those involved in secondary metabolism and phellogen activity. Cork oak, Quercus suber, differs from other Mediterranean oaks such as holm oak (Quercus ilex) by the thickness and organization of the external bark. While holm oak outer bark contains sequential periderms interspersed with dead secondary phloem (rhytidome), the cork oak outer bark only contains thick layers of phellem (cork rings) that accumulate until reaching a thickness that allows industrial uses.

View Article and Find Full Text PDF