Exposure to stressors in early postnatal life induces long-lasting modifications in brain function. This plasticity, an essential characteristic of the brain that enables adaptation to the environment, may also induce impairments in some psychophysiological functions, including learning and memory. Early life stress (ELS) has long-term effects on the hypothalamic-pituitary-adrenal axis response to stressors, and has been reported to lead to neuroinflammation, altered levels of neurotrophic factors, modifications in neurogenesis and synaptic plasticity, with changes in neurotransmitter systems and network functioning.
View Article and Find Full Text PDFNeuroscience
August 2022
The endocannabinoid system is involved in the fine-tuning of local synaptic plasticity in the hippocampus during the initial steps of memory formation/transformation. In spite of extensive studies, endocannabinoid modulation of these processes is still poorly understood. Here we studied the effects of intra-CA1 infused AM404, an anandamide (AEA) transport/metabolism inhibitor, upon an aversive memory consolidation with or without prior systemic administration of metyrapone, as well the concomitant intra-CA1 administration of AM404 plus AM251 (CB1 receptor inverse-agonist), capsazepine (TRPV1 receptor antagonist) or tropicamide (M4 receptor antagonist).
View Article and Find Full Text PDFGeneralization is an adaptive process that allows animals to deal with threatening circumstances similar to prior experiences. Systems consolidation is a time-dependent process in which memory loses it precision concomitantly with reorganizational changes in the brain structures that support memory retrieval. In this, memory becomes progressively independent from the hippocampus and more reliant on cortical structures.
View Article and Find Full Text PDFDuring development, genetic and environmental factors interact to modify specific phenotypes. Both in humans and in animal models, early adversities influence cognitive flexibility, an important brain function related to behavioral adaptation to variations in the environment. Abnormalities in cognitive functions are related to changes in synaptic connectivity in the prefrontal cortex (PFC), and altered levels of synaptic proteins.
View Article and Find Full Text PDFSurvival depends on the ability of animals to avoid threats and approach rewards. Traditionally, these two opposing motivational systems have been studied separately. In nature, however, they regularly compete for the control of behavior.
View Article and Find Full Text PDFUbiquitination is involved in synaptic plasticity and memory, but the involvement of HECT E3 ligases in these processes has not yet been established. Here, we bilaterally infused heclin, a specific inhibitor of some of these ligases, into the dorsal hippocampus of male Wistar rats that were trained in a contextual fear conditioning. Heclin improved short-term memory, consolidation, retrieval, and reconsolidation when administered immediately post training, prior to testing, or after memory reactivation, respectively.
View Article and Find Full Text PDFFront Mol Neurosci
May 2019
Early life experiences program lifelong responses to stress. In agreement, resilience and vulnerability to psychopathologies, such as posttraumatic stress disorder (PTSD), have been suggested to depend on the early background. New therapies have targeted memory reconsolidation as a strategy to modify the emotional valence of traumatic memories.
View Article and Find Full Text PDFThe ability to adapt to new situations involves behavioral changes expressed either from an innate repertoire, or by acquiring experience through memory consolidation mechanisms, by far a much richer and flexible source of adaptation. Memory formation consists of two interrelated processes that take place at different spatial and temporal scales, , local plastic changes in the recruited neurons, and process of gradual reorganization of the explicit/declarative memory trace between hippocampus and the neocortex. In this review, we summarize some converging experimental results from our lab that support a normal temporal framework of memory systems consolidation as measured both from the anatomical and the psychological points of view, and propose a hypothetical model that explains these findings while predicting other phenomena.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2019
Prior learning can modify the plasticity mechanisms that are used to encode new information. For example, NMDA receptor (NMDAR) activation is typically required for new spatial and contextual learning in the hippocampus. However, once animals have acquired this information, they can learn new tasks even if NMDARs are blocked.
View Article and Find Full Text PDFIt has been proposed that long-lasting changes in dendritic spines provide a physical correlate for memory formation and maintenance. Spine size and shape are highly plastic, controlled by actin polymerization/depolymerization cycles. This actin dynamics are regulated by proteins such as calpain, a calcium-dependent cysteine protease that cleaves the structural cytoskeleton proteins and other targets involved in synaptic plasticity.
View Article and Find Full Text PDFMemories are not instantly created in the brain, requiring a gradual stabilization process called consolidation to be stored and persist in a long-lasting manner. However, little is known whether this time-dependent process is dynamic or static, and the factors that might modulate it. Here, we hypothesized that the time-course of consolidation could be affected by specific learning parameters, changing the time window where memory is susceptible to retroactive interference.
View Article and Find Full Text PDFThe requirement of NMDA receptor (NMDAR) activity for memory formation is well described. However, the plasticity mechanisms for memory can be modified by experience, such that a future similar learning becomes independent of NMDARs. This effect has often been reported in learning events conducted with a few days interval.
View Article and Find Full Text PDFHeat shock proteins of the 70-kDa (HSP70) family are cytoprotective molecular chaperones that are present in neuronal cells and can be induced by a variety of homeostatically stressful situations (not only proteostatic insults), but also by synaptic activity, including learning tasks. Physiological stimuli that induce long-term memory formation are also capable of stimulating the synthesis of HSP70 through the activation of heat shock transcription factor-1 (HSF1). In this study, we investigated the influence of HSP70 on fear memory consolidation and MAPK activity.
View Article and Find Full Text PDFExtinction is a process that involves new learning that inhibits the expression of previously acquired memories. Although temporarily effective, extinction does not erase an original fear association. Since the extinction trace tends to fade over time, the original memory can resurge.
View Article and Find Full Text PDFHippocampus
May 2017
Systems consolidation is a time-dependent reorganization process involving neocortical and hippocampal networks underlying memory storage and retrieval. The involvement of the hippocampus during acquisition is well described; however we know much less about the concomitant contribution of cortical activity levels to the formation of stable remote memories. Here, after a reversible pharmacological inhibition of the anterior cingulate cortex (ACC) during the acquisition of a contextual fear conditioning, retrieval of both recent and remote memories were impaired, an effect that was reverted by a single memory reactivation session 48 h after training, through a destabilization-dependent mechanism interpreted as reconsolidation, that restored the normal course of systems consolidation in order to rescue a remote memory.
View Article and Find Full Text PDFSystems consolidation has been described as a time-dependent reorganization process involving the neocortical and hippocampal networks underlying memory storage and retrieval. Previous studies of our lab were able to demonstrate that systems consolidation is a dynamic process, rather than a merely passive, time-dependent phenomenon. Here, we studied the influence of sequential learning in contextual fear conditioning (CFC) with different training intensities in the time-course of hippocampal dependency and contextual specificity.
View Article and Find Full Text PDFLong-lasting changes in dendritic spines provide a physical correlate for memory formation and persistence. LIM kinase (LIMK) plays a critical role in orchestrating dendritic actin dynamics during memory processing, since it is the convergent downstream target of both the Rac1/PAK and RhoA/ROCK pathways that in turn induce cofilin phosphorylation and prevent depolymerization of actin filaments. Here, using a potent LIMK inhibitor (BMS-5), we investigated the role of LIMK activity in the dorsal hippocampus during contextual fear memory in rats.
View Article and Find Full Text PDFIn the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting.
View Article and Find Full Text PDFAfter initial encoding memories may undergo a time-dependent reorganization, becoming progressively independent from the hippocampus (HPC) and dependent on cortical regions such as the anterior cingulate cortex (ACC). Although the mechanisms underlying systems consolidation are somewhat known, the factors determining its temporal dynamics are still poorly understood. Here, we studied the influence of novel learning occurring between training and test sessions on the time-course of HPC- and ACC-dependency of contextual fear conditioning (CFC) memory expression.
View Article and Find Full Text PDFThe dynamic processes related to mnemonic plasticity have been extensively researched in the last decades. More recently, studies have attracted attention because they show an unusual plasticity mechanism that is independent of the receptor most usually related to first-time learning--that is, memory acquisition-the NMDA receptor. An interesting feature of this type of learning is that a previous experience may cause modifications in the plasticity mechanism of a subsequent learning, suggesting that prior experience in a very similar task triggers a memory acquisition process that does not depend on NMDARs.
View Article and Find Full Text PDFThe endocannabinoid system (ECS) has a pivotal role in different cognitive functions such as learning and memory. Recent evidence confirm the involvement of the hippocampal CB1 receptors in the modulation of both memory extinction and reconsolidation processes in different brain areas, but few studies focused on the infralimbic cortex, another important cognitive area. Here, we infused the cannabinoid agonist CP55,940 either into the infralimbic cortex (IL) or the CA1 area of the dorsal hippocampus (HPC) of adult male Wistar rats immediately after a short (3min) reactivation session, known to labilize a previously consolidated memory trace in order to allow its reconsolidation with some modification.
View Article and Find Full Text PDFDespite the fact that the cannabinoid receptor type 1 (CB1R) plays a pivotal role in emotional memory processing in different regions of the brain, its function in the retrosplenial cortex (RSC) remains unknown. Here, using contextual fear conditioning in rats, we showed that a post-training intra-RSC infusion of the CB1R antagonist AM251 impaired, and the agonist CP55940 improved, long-term memory consolidation. Additionally, a post-reactivation infusion of AM251 enhanced memory reconsolidation, while CP55940 had the opposite effect.
View Article and Find Full Text PDFMemory fades over time, becoming more schematic or abstract. The loss of contextual detail in memory may reflect a time-dependent change in the brain structures supporting memory. It has been well established that contextual fear memory relies on the hippocampus for expression shortly after learning, but it becomes hippocampus-independent at a later time point, a process called systems consolidation.
View Article and Find Full Text PDF