Publications by authors named "Jorge A Piedrahita"

Article Synopsis
  • Cells expressing LGR5 are crucial for homeostasis and regeneration in various organs, but their function in the human lung has not been well studied, especially compared to findings from mouse models.
  • Utilizing a new transgenic pig model, researchers identified two significant populations of LGR5 cells in the lung that are similar to those found in humans but not in mice.
  • The study reveals that LGR5 expression occurs transiently in fetal lung progenitor cells and is absent in postnatal lungs but can be reactivated in specific organoid models, highlighting the complex roles of LGR5 cells in lung development and potential for repair.
View Article and Find Full Text PDF

Recent advancements in genome editing techniques, notably CRISPR-Cas9 and TALENs, have marked a transformative era in biomedical research, significantly enhancing our understanding of disease mechanisms and helping develop novel therapies. These technologies have been instrumental in creating precise animal models for use in stem cell research and regenerative medicine. For instance, we have developed a transgenic pig model to enable the investigation of LGR5-expressing cells.

View Article and Find Full Text PDF
Article Synopsis
  • The laboratory developed a structure-guided method over 5 years to create new AAV capsids that target specific tissues, improve transduction efficiency, and avoid immune responses.
  • The detailed protocol includes four key steps: designing AAV capsid libraries, producing these libraries, cycling them in animal models, and evaluating the best candidates in vivo.
  • The approach emphasizes using 3D structural data to guide AAV evolution and can be adapted for various research needs, enhancing the toolkit for genetic manipulation and human gene therapy applications.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists found special cells called stem/progenitors in pigs and humans that help the liver and pancreas heal after birth.
  • These cells are mostly located in certain areas, like Brunner's Glands and pancreatic ducts, and have unique traits that show they can turn into different types of cells.
  • Pigs are good for research because their stem/progenitors can be used in studies to help with liver and pancreas problems in humans.
View Article and Find Full Text PDF

Intestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model.

View Article and Find Full Text PDF

Adrenomedullin (ADM) as a highly conserved peptide hormone has been reported to increase significantly in the uterine lumen during the peri-implantation period of pregnancy in pigs, but its functional roles in growth and development of porcine conceptus (embryonic/fetus and its extra-embryonic membranes) as well as underlying mechanisms remain largely unknown. Therefore, we conducted in vitro experiments using our established porcine trophectoderm cell line (pTr2) isolated from Day-12 porcine conceptuses to test the hypothesis that porcine ADM stimulates cell proliferation, migration and adhesion via activation of mechanistic target of rapamycin (MTOR) cell signaling pathway in pTr2 cells. Porcine ADM at 10 M stimulated (P < 0.

View Article and Find Full Text PDF

Mice with severe combined immunodeficiency are commonly used as hosts of human cells. Size, longevity, and physiology, however, limit the extent to which immunodeficient mice can model human systems. To address these limitations, we generated immunodeficient pigs and demonstrate successful engraftment of SLA mismatched allogeneic D42 fetal liver cells, tagged with pH2B-eGFP, and human CD34 hematopoietic stem cells after cell transplantation.

View Article and Find Full Text PDF

Recombinant adeno-associated viral (AAV) vectors are a promising gene delivery platform, but ongoing clinical trials continue to highlight a relatively narrow therapeutic window. Effective clinical translation is confounded, at least in part, by differences in AAV biology across animal species. Here, we tackle this challenge by sequentially evolving AAV capsid libraries in mice, pigs and macaques.

View Article and Find Full Text PDF

Current cellular hydrogel-based skin grafts composed of human dermal fibroblasts and a hydrogel scaffold tend to minimize contraction of full-thickness skin wounds and support skin regeneration. However, there has been no comparison between the sources of the dermal fibroblast used. Products using human adult or neonatal foreskin dermal fibroblasts are often expanded and used after multiple passages without a clear understanding of the effects of this initial production step on the quality and reproducibility of the cellular behavior.

View Article and Find Full Text PDF

Over 11% of the world's population experience hearing loss. Although there are promising studies to restore hearing in rodent models, the size, ontogeny, genetics, and frequency range of hearing of most rodents' cochlea do not match that of humans. The porcine cochlea can bridge this gap as it shares many anatomical, physiological, and genetic similarities with its human counterpart.

View Article and Find Full Text PDF

Hair follicle stem cells are key for driving growth and homeostasis of the hair follicle niche, have remarkable regenerative capacity throughout hair cycling, and display fate plasticity during cutaneous wound healing. Due to the need for a transgenic reporter, essentially all observations related to LGR5-expressing hair follicle stem cells have been generated using transgenic mice, which have significant differences in anatomy and physiology from the human. Using a transgenic pig model, a widely accepted model for human skin and human skin repair, we demonstrate that LGR5 is a marker of hair follicle stem cells across species in homeostasis and development.

View Article and Find Full Text PDF

Context: Pediatric anterior cruciate ligament (ACL) injury rates are increasing and are highest in female adolescents. Complete ACL tears are typically surgically reconstructed, but few guidelines and very limited data exist regarding the need for surgical reconstruction or rehabilitation for partial ACL tears in skeletally immature patients.

Objective: To evaluate the effects of partial (anteromedial bundle) and complete ACL transection on joint laxity and tissue forces under anterior and rotational loads in male and female stifle joints throughout skeletal growth in the porcine model.

View Article and Find Full Text PDF

Pediatric anterior cruciate ligament (ACL) injuries are on the rise, and females experience higher ACL injury risk than males during adolescence. Studies in skeletally immature patients indicate differences in ACL size and joint laxity between males and females after the onset of adolescence. However, functional data regarding the ACL and its anteromedial and posterolateral bundles in the pediatric population remain rare.

View Article and Find Full Text PDF

Gelatin methacryloyl (GelMA) hydrogels have emerged as promising and versatile biomaterial matrices with applications spanning drug delivery, disease modeling, and tissue engineering and regenerative medicine. GelMA exhibits reversible thermal cross-linking at temperatures below 37 °C due to the entanglement of constitutive polymeric chains, and subsequent ultraviolet (UV) photo-cross-linking can covalently bind neighboring chains to create irreversibly cross-linked hydrogels. However, how these cross-linking modalities interact and can be modulated during biofabrication to control the structural and functional characteristics of this versatile biomaterial is not well explored yet.

View Article and Find Full Text PDF

The use of CRISPR-Cas and RNA-guided endonucleases has drastically changed research strategies for understanding and exploiting gene function, particularly for the generation of gene-edited animal models. This has resulted in an explosion in the number of gene-edited species, including highly biomedically relevant pig models. However, even with error-free DNA insertion or deletion, edited genes are occasionally not expressed and/or translated as expected.

View Article and Find Full Text PDF

Anterior cruciate ligament (ACL) injuries are increasingly common in the skeletally immature population. As such there is a need to increase our understanding of the biomechanical function of the joint following partial and complete ACL injury during skeletal growth. In this work, we aimed to assess changes in knee kinematics and loading of the remaining soft tissues following both partial and complete ACL injury in a porcine model.

View Article and Find Full Text PDF

Prior studies have analyzed growth of musculoskeletal tissues between species or across body segments; however, little research has assessed the differences in similar tissues within a single joint. Here we studied changes in the length and cross-sectional area of four ligaments and tendons, (anterior cruciate ligament, patellar tendon, medial collateral ligament, lateral collateral ligament) in the tibiofemoral joint of female Yorkshire pigs through high-field magnetic resonance imaging throughout growth. Tissue lengths increased by 4- to 5-fold from birth to late adolescence across the tissues while tissue cross-sectional area increased by 10-20-fold.

View Article and Find Full Text PDF

Partial and complete anterior cruciate ligament (ACL) injuries occur in both pediatric and adult populations and can result in loss of joint stability and function. The sigmoidal shape of knee joint function (load-translation curve) under applied loads includes a low-load region (described by slack length) followed by a high-load region (described by stiffness). However, the impact of age and injury on these parameters is not fully understood.

View Article and Find Full Text PDF

Background: ACL injuries are becoming increasingly common in children and adolescents, but little is known regarding age-specific ACL function in these patients. To improve our understanding of changes in musculoskeletal tissues during growth and given the limited availability of pediatric human cadaveric specimens, tissue structure and function can be assessed in large animal models, such as the pig.

Questions/purposes: Using cadaveric porcine specimens ranging throughout skeletal growth, we aimed to assess age-dependent changes in (1) joint kinematics under applied AP loads and varus-valgus moments, (2) biomechanical function of the ACL under the same loads, (3) the relative biomechanical function of the anteromedial and posterolateral bundles of the ACL; and (4) size and orientation of the anteromedial and posterolateral bundles.

View Article and Find Full Text PDF

For more than a century, transplantation of tissues and organs from animals into man, xenotransplantation, has been viewed as a potential way to treat disease. Ironically, interest in xenotransplantation was fueled especially by successful application of allotransplantation, that is, transplantation of human tissue and organs, as a treatment for a variety of diseases, especially organ failure because scarcity of human tissues limited allotransplantation to a fraction of those who could benefit. In principle, use of animals such as pigs as a source of transplants would allow transplantation to exert a vastly greater impact than allotransplantation on medicine and public health.

View Article and Find Full Text PDF

The development of genetically modified livestock has been dependent on incremental technological advances such as embryo transfer, homologous recombination, and somatic cell nuclear transfer (SCNT). This development rate has increased exponentially with the advent of targeted gene modifiers such as zinc finger nucleases, TAL-effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR-Cas). CRISPR-Cas based systems in particular have broad applicability, and have low technical and economic barriers for their implementation.

View Article and Find Full Text PDF
Article Synopsis
  • - Expression of the
  • HMGA2
  • gene is linked to body size in both mice and humans, with gene alterations leading to significant reductions in size across species.
  • - Gene-edited HMGA2-deficient pigs demonstrated an average body weight decrease of 20%, with male pigs showing reductions of up to 85%, along with affected organ weights.
  • - The study confirms that HMGA2's role in growth regulation is conserved in mammals and suggests potential applications in managing body and organ size in various species, including those relevant to agriculture and pet care.
View Article and Find Full Text PDF