Publications by authors named "Jorge A P Marchesi"

Purpose: This study aimed to evaluate the epigenetic reprogramming of ICR1 (KvDMR1) and ICR2 (H19DMR) and expression of genes controlled by them as well as those involved in methylation, demethylation, and pluripotency.

Methods: We collected germinal vesicle (GV) and metaphase II (MII) oocytes, and preimplantation embryos at five stages [zygote, 4-8 cells, 8-16 cells, morula, and expanded blastocysts (ExB)]. DNA methylation was assessed by BiSeq, and the gene expression was evaluated using qPCR.

View Article and Find Full Text PDF

Background And Objective: Imprinted genes are important for the offspring development. To assess the relationship between obesity-related methylation and and gene expression and offspring growth and body composition.

Methods: Thirty-nine overweight/obese and 25 normal weight pregnant women were selected from the "Araraquara Cohort Study" according to their pre-pregnancy BMI.

View Article and Find Full Text PDF

IBV variants belonging to the GI-23 lineage have circulated since 1998 in the Middle East and have spread to several countries over time. In Brazil, the first report of GI-23 occurred in 2022. The study aimed to evaluate the in vivo pathogenicity of exotic variant GI-23 isolates.

View Article and Find Full Text PDF

Femoral head separation (FHS) is characterized by the detachment of growth plate (GP) and articular cartilage, occurring in tibia and femur. However, the molecular mechanisms involved with this condition are not completely understood. Therefore, genes and biological processes (BP) involved with FHS were identified in 21-day-old broilers through RNA sequencing of the femoral GP.

View Article and Find Full Text PDF

White Striping (WS) has been one of the main issues in poultry production in the last years since it affects meat quality. Studies have been conducted to understand WS and other myopathies in chickens, and some biological pathways have been associated to the prevalence of these conditions, such as extracellular calcium level, oxidative stress, localized hypoxia, possible fiber-type switching, and cellular repairing. Therefore, to understand the genetic mechanisms involved in WS, 15 functional candidate genes were chosen to be analyzed by quantitative PCR (qPCR) in breast muscle of normal and WS-affected chickens.

View Article and Find Full Text PDF

Chicken feed efficiency (FE) traits are the most important economic traits in broiler production. Several studies evaluating genetic factors affecting food consumption in chickens are available. However, most of these studies identified genomic regions containing putative quantitative trait loci for each trait separately.

View Article and Find Full Text PDF

Background: The proximal femoral head separation (FHS) or epiphysiolysis is a prevalent disorder affecting the chicken femur epiphysis, being considered a risk factor to infection which can cause bacterial chondronecrosis with osteomyelitis in broilers. To identify the genetic mechanisms involved in epiphysiolysis, differentially expressed (DE) genes in the femur of normal and FHS-affected broilers were identified using RNA-Seq technology. Femoral growth plate (GP) samples from 35-day-old commercial male broilers were collected from 4 healthy and 4 FHS-affected broilers.

View Article and Find Full Text PDF

Single nucleotide polymorphism (SNP) markers are used to study population structure and conservation genetics, which permits assessing similarities regarding the linkage disequilibrium and information about the relationship among individuals. To investigate the population genomic structure of 300 females and 25 males from a commercial maternal pig line we analyzed linkage disequilibrium extent, inbreeding coefficients using genomic and conventional pedigree data, and population stratification. The average linkage disequilibrium (r2) was 0.

View Article and Find Full Text PDF

Background: In previous studies on an Iberian x Landrace cross, we have provided evidence that supported the porcine ELOVL6 gene as the major causative gene of the QTL on pig chromosome 8 for palmitic and palmitoleic acid contents in muscle and backfat. The single nucleotide polymorphism (SNP) ELOVL6:c.-533C > T located in the promoter region of ELOVL6 was found to be highly associated with ELOVL6 expression and, accordingly, with the percentages of palmitic and palmitoleic acids in longissimus dorsi and adipose tissue.

View Article and Find Full Text PDF