Publications by authors named "Jorge A G Santos"

Microplastics have been studied in sediments from coastal and aquatic environments, but contamination of mangrove soils is still relatively unknown in most mangroves around the world. In this study, the presence of microplastics was investigated in six mangrove soils around the Todos Santos Bay (TSB), the largest and most important navigable bay on the Brazilian coast. Samples were collected at three depths (surface, 10 cm, and 30 cm) at three different distances from the lower tidal area.

View Article and Find Full Text PDF

Biochar from sewage sludge is a low-cost sorbent that may be used for several environmental functions. This study evaluates the induced effects of pyrolysis temperature on the physicochemical characteristics of sewage sludge (SS) biochar produced at 350 (SSB), 450 (SSB) and 600 (SSB), based on the metal enrichment index, metal mobility index (MMI), and potential ecological risk index (PERI) of Cd, Cu, Pb, and Zn. Increased pyrolysis temperature reduced the biochar concentration of elements that are lost as volatile compounds (C, N, H, O, and S), while the concentration of stable aromatic carbon, ash, alkalinity, some macro (Ca, Mg, PO, and KO) and micronutrients (Cu and Zn), and toxic elements such as Pb and Cd increased.

View Article and Find Full Text PDF

We investigated effects of arsenate (AsV), chromate (CrVI) and sulfate on As and Cr uptake and translocation by arsenic hyperaccumulator Pteris vittata (PV), which was exposed to AsV, CrVI and sulfate at 0, 0.05, 0.25 or 1.

View Article and Find Full Text PDF

Optimization of arsenic uptake by Pteris vittata may reduce the remediation time and cost of arsenic-contaminated groundwater. This greenhouse experiment evaluated the effects of five doses of P (0, 150, 300, 450 and 600 microM P) and two fern ages (45 and 90 d old) on the effectiveness of arsenic removal using 18 L of contaminated groundwater per plant. Arsenic-depletion was monitored weekly over a period of 74 d.

View Article and Find Full Text PDF

Better understanding of the processes controlling arsenic bioavailability in the rhizosphere is important to enhance plant arsenic accumulation by hyperaccumulators. This greenhouse experiment was conducted to evaluate the chemical characteristics of the rhizosphere of two arsenic hyperaccumulators Pterisvittata and Pterisbiaurita. They were grown for 8 weeks in rhizopots containing arsenic-contaminated soils (153 and 266 mg kg(-1) arsenic).

View Article and Find Full Text PDF

The effects of timing in phosphate application on plant growth and arsenic removal by arsenic hyperaccumulator Pteris vittata L. of different ages were evaluated. The hydroponic experiment consisted of three plant ages (A45d, A90d and A180d) and three P feeding regimens (P200+0, P134+66 and P66+134) growing for 45 d in 0.

View Article and Find Full Text PDF

This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004.

View Article and Find Full Text PDF

This greenhouse experiment evaluated the influence of arsenic uptake by arsenic hyperaccumulator Pteris vittata L. and non-arsenic hyperaccumulator Nephrolepis exaltata L. on arsenic chemistry in bulk and rhizosphere soil.

View Article and Find Full Text PDF

Phytoremediation, an emerging, plant-based technology for the removal of toxic contaminants from soil and water, has been receiving increased attention. The prerequisite for successful phytoremediation is the existence of hyperaccumulator plants. Designed to search for new arsenic (As) hyperaccumulators, an experiment was conducted under greenhouse conditions in a completely randomized design with four replications.

View Article and Find Full Text PDF