Publications by authors named "Jorg Hamann"

Multiple sclerosis (MS) is a highly heterogeneous disease with varying remyelination potential across individuals and between lesions. However, the molecular mechanisms underlying the potential to remyelinate remain poorly understood. In this study, we aimed to take advantage of the intrinsic heterogeneity in remyelinating capacity between MS donors and lesions to uncover known and novel pro-remyelinating molecules for MS therapies.

View Article and Find Full Text PDF

Control of microglia activity through CD200-CD200R and CD47-SIRPα interactions has been implicated in brain homeostasis. Here, we assessed CD200, CD47, CD200R and SIRPα expression with qPCR and immunohistochemistry in multiple sclerosis (MS) normal-appearing cortical grey matter (NAGM), normal-appearing white matter (NAWM), cortical grey matter (GM) lesions and perilesional GM, and compared this to control GM and white matter (WM), to investigate possible altered control of microglia in MS. In MS NAGM, CD200 expression is lower compared with control GM, specifically in cortical layers 1 and 2, and CD200 expression in NAGM negatively correlates with the cortical lesion rate.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS), which can clinically manifest as attacks of neurologic disability and new lesion formation, and a progression of sustained neurologic disability over time. In MS, activated B and T cells are recruited from outside the CNS, and contribute to inflammation, demyelination, and tissue damage inside the brain parenchyma. In the last decades, the treatment of MS has improved by the introduction of several disease-modifying therapies (DMTs).

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a heterogeneous neurological disorder with regards to clinical presentation and pathophysiology. Here, we investigated the heterogeneity of MS by performing an exploratory factor analysis on quantitative and qualitative neuropathology data collected for 226 MS donors in the Netherlands Brain Bank autopsy cohort. Three promising dimensions were identified and subsequently validated with clinical, neuropathological, and genetic data.

View Article and Find Full Text PDF

Inflammation is a prominent hypothesis in the neurobiology of depression. In our transcriptomic profiling study of microglia in chronic major depressive disorder (MDD), we revealed a distinct disease-associated microglia (DAM) transcriptomic profile exclusively found in cortical gray matter, that we have designated DepDAM. These DepDAM revealed an immune-suppressed state, with a possible upstream mechanism for microglial suppression, by upregulation of CD200 and CD47 ("don't eat me signals") located on synapses.

View Article and Find Full Text PDF

Microglia nodules (HLA-DR cell clusters) are associated with brain pathology. In this post-mortem study, we investigated whether they represent the first stage of multiple sclerosis (MS) lesion formation. We show that microglia nodules are associated with more severe MS pathology.

View Article and Find Full Text PDF
Article Synopsis
  • The Concise Guide to PHARMACOLOGY 2023/24 offers a summarized overview of approximately 1800 drug targets and around 6000 interactions with 3900 ligands, mostly in a tabular format.
  • It focuses on selective pharmacology and includes links to an open access knowledgebase for more detailed drug information.
  • The guide divides drug targets into six major categories, providing essential summaries and guidance based on the latest pharmacological data available as of mid-2023, while serving as an official resource by the International Union of Basic and Clinical Pharmacology.
View Article and Find Full Text PDF

Background: Microglia have been implicated in the pathophysiology of major depressive disorder (MDD), but information on biological mechanisms is limited. Therefore, we investigated the gene expression profile of microglial cells in relation to neuronal regulators of microglia activity in well-characterized MDD and control autopsy brains.

Methods: Pure, intact microglia were isolated at brain autopsy from occipital cortex gray matter (GM) and corpus callosum white matter of 13 donors with MDD and 10 age-matched control donors for RNA sequencing.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown.

View Article and Find Full Text PDF

Background: Although distinct brain-homing B cells have been identified in multiple sclerosis (MS), it is unknown how these further evolve to contribute to local pathology. We explored B-cell maturation in the central nervous system (CNS) of MS patients and determined their association with immunoglobulin (Ig) production, T-cell presence, and lesion formation.

Methods: Ex vivo flow cytometry was performed on post-mortem blood, cerebrospinal fluid (CSF), meninges and white matter from 28 MS and 10 control brain donors to characterize B cells and antibody-secreting cells (ASCs).

View Article and Find Full Text PDF

GPR56/ADGRG1 is an adhesion G protein-coupled receptor connected to brain development, haematopoiesis, male fertility, and tumorigenesis. Nevertheless, expression of GPR56 is not restricted to developmental processes. Studies over the last years have demonstrated a marked presence of GPR56 in human cytotoxic NK and T cells.

View Article and Find Full Text PDF

The human brain is populated by perivascular T cells with a tissue-resident memory T (T)-cell phenotype, which in multiple sclerosis (MS) associate with lesions. We investigated the transcriptional and functional profile of freshly isolated T cells from white and gray matter. RNA sequencing of CD8 and CD4 CD69 T cells revealed T-cell signatures.

View Article and Find Full Text PDF

Objective: Changes in the normal-appearing white matter (NAWM) in multiple sclerosis (MS) may contribute to disease progression. Here, we systematically quantified ultrastructural and subcellular characteristics of the axon-myelin unit in MS NAWM and determined how this correlates with low-grade inflammation.

Methods: Human brain tissue obtained with short postmortem delay and fixation at autopsy enables systematic quantification of ultrastructural characteristics.

View Article and Find Full Text PDF

Circulating and tissue-resident T cells collaborate in the protection of tissues against harmful infections and malignant transformation but also can instigate autoimmune reactions. Similar roles for T cells in the brain have been less evident due to the compartmentized organization of the central nervous system (CNS). In recent years, beneficial as well as occasional, detrimental effects of T-cell-targeting drugs in people with early multiple sclerosis (MS) have increased interest in T cells patrolling the CNS.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines the diverse responses of acute myeloid leukemia (AML) to treatments, focusing on GPR56 as a marker linked to poor patient outcomes and its role in identifying distinct leukemia stem cell (LSC) groups with varying self-renewal abilities.
  • - Researchers discovered that GPR56 influences LSC compartments through a complex network involving regulators like Wnt, Hedgehog, and EMT, where inhibiting Wnt can enhance more primitive, slowly cycling LSC populations.
  • - The findings suggest a dynamic relationship between LSC compartments that contributes to poor outcomes in GPR56 AML, proposing that a combination of CDK7 inhibitors and Bcl-2 inhibitors could be an effective targeted therapy strategy.
View Article and Find Full Text PDF

Tissue-resident memory T (T) cells with potent antiviral and antibacterial functions protect the epithelial and mucosal surfaces of our bodies against infection with pathogens. The strong proinflammatory activities of T cells suggest requirement for expression of inhibitory molecules to restrain these memory T cells under steady state conditions. We previously identified the adhesion G protein-coupled receptor GPR56 as an inhibitory receptor of human cytotoxic lymphocytes that regulates their cytotoxic effector functions.

View Article and Find Full Text PDF
Article Synopsis
  • The Concise Guide to Pharmacology 2021/22 offers a streamlined overview of nearly 1900 human drug targets, focusing on selective pharmacology and organized mainly in tables for quick reference.
  • The guide serves as a reliable, citable resource that distills extensive online content while ensuring it reflects the status as of mid-2021, distinct from ongoing database updates.
  • Key pharmacological targets include G protein-coupled receptors, ion channels, and enzymes, with official nomenclature and references provided to assist further research and understanding.
View Article and Find Full Text PDF

We used mass cytometry to extensively characterize bronchoalveolar lavage macrophages before and two days after in vivo rhinovirus 16 infection in a heterogeneous population of healthy and asthma/COPD subjects. Multivariate partial least squares discriminant analysis revealed distinct clusters of alveolar macrophages before versus after the virus, suggesting changes in overall phenotype.

View Article and Find Full Text PDF

Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) are critical sensors affecting the state of eukaryotic cells. To get systematic insight into the GPCRome of microglia, we analyzed publicly available RNA-sequencing data of bulk and single cells obtained from human and mouse brains. We identified 17 rhodopsin and adhesion family GPCRs robustly expressed in microglia from human brains, including the homeostasis-associated genes , , , , , and .

View Article and Find Full Text PDF

Background: Mortality rates are high among hospitalized patients with COVID-19, especially in those intubated on the ICU. Insight in pathways associated with unfavourable outcome may lead to new treatment strategies.

Methods: We performed a prospective cohort study of patients with COVID-19 admitted to general ward or ICU who underwent serial blood sampling.

View Article and Find Full Text PDF

Objective: To determine whether B-cell presence in brainstem and white matter (WM) lesions is associated with poorer pathological and clinical characteristics in advanced MS autopsy cases.

Methods: Autopsy tissue of 140 MS and 24 control cases and biopsy tissue of 24 patients with MS were examined for CD20 B cells and CD138 plasma cells. The presence of these cells was compared with pathological and clinical characteristics.

View Article and Find Full Text PDF

Microglia are phagocytic cells involved in homeostasis of the brain and are key players in the pathogenesis of multiple sclerosis (MS). A hallmark of MS diagnosis is the presence of IgG Abs, which appear as oligoclonal bands in the cerebrospinal fluid. In this study, we demonstrate that myelin obtained post mortem from 8 out of 11 MS brain donors is bound by IgG Abs.

View Article and Find Full Text PDF