Publications by authors named "Jordyn VanPortfliet"

Heightened energetic and nutrient demand during lactogenic differentiation of the mammary gland elicits upregulation of various stress responses to support cellular homeostasis. Here, we identify the stimulator of interferon genes (STING) as an immune supporter of the functional development of mouse mammary epithelial cells (MECs). An in vitro model of MEC differentiation revealed that STING is activated in a cGAS-independent manner to produce both type I interferons and proinflammatory cytokines in response to the accumulation of mitochondrial reactive oxygen species.

View Article and Find Full Text PDF

Mitochondrial diseases (MtD) represent a significant public health challenge due to their heterogenous clinical presentation, often severe and progressive symptoms, and the lack of effective therapies. Environmental exposures, such bacterial and viral infection, can further compromise mitochondrial function and exacerbate the progression of MtD. Infections in MtD patients more frequently progress to sepsis, pneumonia, and other detrimental inflammatory endpoints.

View Article and Find Full Text PDF

Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is a potent agonist of the innate immune system; however, the exact immunostimulatory features of mtDNA and the kinetics of detection by cytosolic nucleic acid sensors remain poorly defined. Here, we show that mitochondrial genome instability promotes Z-form DNA accumulation. Z-DNA binding protein 1 (ZBP1) stabilizes Z-form mtDNA and nucleates a cytosolic complex containing cGAS, RIPK1, and RIPK3 to sustain STAT1 phosphorylation and type I interferon (IFN-I) signaling.

View Article and Find Full Text PDF

Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2 (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2 macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes.

View Article and Find Full Text PDF

Mitochondria have emerged as key drivers of mammalian innate immune responses, functioning as signaling hubs to trigger inflammation and orchestrating metabolic switches required for phagocyte activation. Mitochondria also contain damage-associated molecular patterns (DAMPs), molecules that share similarity with pathogen-associated molecular patterns (PAMPs) and can engage innate immune sensors to drive inflammation. The aberrant release of mitochondrial DAMPs during cellular stress and injury is an increasingly recognized trigger of inflammatory responses in human diseases.

View Article and Find Full Text PDF

Intramembrane metalloproteases (IMMPs) regulate diverse biological processes by cleaving membrane-associated substrates within the membrane or near its surface. SpoIVFB is an intramembrane metalloprotease of Bacillus subtilis that cleaves Pro-σ during endosporulation. Intramembrane metalloproteases have a broadly conserved NPDG motif, which in the structure of an archaeal enzyme is located in a short loop that interrupts a transmembrane segment facing the active site.

View Article and Find Full Text PDF