Micropatterning is often used to engineer the surface properties of objects because it allows the enhancement or modification of specific functionalities without modification of the bulk material properties. Microneedle arrays have been explored in the past for drug delivery and enhancement of tissue anchoring; however, conventional methods are primarily limited to thick, planar substrates. Here, we demonstrate a method for the fabrication of microneedle arrays on thin flexible polyurethane substrates.
View Article and Find Full Text PDF3D printing has been used to create a wide variety of anatomical models and tools for procedural planning and training. Yet, the printing of permanent, soft endocardial implants remains challenging because of the need for haemocompatibility and durability of the printed materials. Here, we describe an approach for the rapid prototyping of patient-specific cardiovascular occluders via 3D printing and static moulding of inflatable silicone/polyurethane balloons derived from volume-rendered computed tomography scans.
View Article and Find Full Text PDF