A high alkaline pH was previously demonstrated to enhance the extraction yield of brewer's spent grains (BSG) proteins. The effects of extraction pH beyond the extraction yield, however, has not been investigated before. The present work examined the effects of extraction pH (pH 8-12) on BSG proteins' (1) amino acid compositions, (2) secondary structures, (3) thermal stability, and (4) functionalities (i.
View Article and Find Full Text PDFTechno-functional properties of protein isolates such as emulsification, foaming, and gelling serve as key indicators to determine their food applications. Conventional macro-volume techniques used to measure these techno-functional properties are usually time consuming, require large amounts of protein samples, and are impractical when diverse protein samples are handled at the early screening stage. To overcome these issues, we have developed scaled-down (miniaturized) assays to test techno-functional properties of protein samples.
View Article and Find Full Text PDFHighly hygroscopic pharmaceutical and nutraceutical solids are prone to significant changes in their physicochemical properties due to chemical degradation and/or solid-state transition, resulting in adverse effects on their therapeutic performances and shelf life. Moisture absorption also leads to excessive wetting of the solids, causing their difficult handling during manufacturing. In this review, four formulation strategies that have been employed to tackle hygroscopicity issues in oral solid dosage forms of pharmaceuticals/nutraceuticals were discussed.
View Article and Find Full Text PDFThe therapeutic effects of antioxidant-loaded nanoemulsion can be often optimized by controlling the release rate in human body. Release kinetic models can be used to predict the release profile of antioxidant compounds and allow identification of key parameters that affect the release rate. It is known that one of the critical aspects in establishing a reliable release kinetic model is to understand the underlying release mechanisms.
View Article and Find Full Text PDFGreater awareness of environmental sustainability has driven many industries to transition from using synthetic organic solvents to greener solvents in their manufacturing. Deep eutectic solvents (DESs) have emerged as a highly promising category of green solvents with well-demonstrated and wide-ranging applications, including their use as a solvent in extraction of small-molecule bioactive compounds for food and pharmaceutical applications. The use of DES as an extraction solvent of biological macromolecules, on the other hand, has not been as extensively studied.
View Article and Find Full Text PDF