Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination.
View Article and Find Full Text PDFWe describe a rapid tissue donation program for individuals with multiple sclerosis (MS) that requires scientists and technicians to be on-call 24/7, 365 days a year. Participants consent to donate their brain and spinal cord. Most patients were followed by neurologists at the Cleveland Clinic Mellen Center for MS Treatment and Research.
View Article and Find Full Text PDFOxidative stress is increasingly implicated as a co-factor of tissue injury in inflammatory/demyelinating disorders of the central nervous system (CNS), such as multiple sclerosis (MS). While rodent experimental autoimmune encephalomyelitis (EAE) models diverge from human demyelinating disorders with respect to limited oxidative injury, we observed that in a non-human primate (NHP) model for MS, namely EAE in the common marmoset, key pathological features of the disease were recapitulated, including oxidative tissue injury. Here, we investigated the presence of oxidative injury in another NHP EAE model, i.
View Article and Find Full Text PDFThe absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34-56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund's adjuvant (IFA)].
View Article and Find Full Text PDFOxidative damage and iron redistribution are associated with the pathogenesis and progression of multiple sclerosis (MS), but these aspects are not entirely replicated in rodent experimental autoimmune encephalomyelitis (EAE) models. Here, we report that oxidative burst and injury as well as redistribution of iron are hallmarks of the MS-like pathology in the EAE model in the common marmoset. Active lesions in the marmoset EAE brain display increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p22phox, p47phox, and gp91phox) and inducible nitric oxide synthase immunoreactivity within lesions with active inflammation and demyelination, coinciding with enhanced expression of mitochondrial heat-shock protein 70 and superoxide dismutase 1 and 2.
View Article and Find Full Text PDFClin Transl Immunology
February 2017
Despite the well-known association of Epstein-Barr virus (EBV), a lymphocryptovirus (LCV), with multiple sclerosis, a clear pathogenic role for disease progression has not been established. The translationally relevant experimental autoimmune encephalomyelitis (EAE) model in marmoset monkeys revealed that LCV-infected B cells have a central pathogenic role in the activation of T cells that drive EAE progression. We hypothesized that LCV-infected B cells induce T-cell functions relevant for EAE progression.
View Article and Find Full Text PDFNew drugs often fail in the translation from the rodent experimental autoimmune encephalomyelitis (EAE) model to human multiple sclerosis (MS). Here, we present the marmoset EAE model as an indispensable model for translational research into MS. The genetic heterogeneity of this species and lifelong exposure to chronic latent infections and environmental pathogens create a human-like immune system.
View Article and Find Full Text PDFNon-human primate models of human disease have an important role in the translation of a new scientific finding in lower species into an effective treatment. In this study, we tested a new therapeutic antibody against the IL-7 receptor α chain (CD127), which in a C57BL/6 mouse model of experimental autoimmune encephalomyelitis (EAE) ameliorates disease, demonstrating an important pathogenic function of IL-7. We observed that while the treatment was effective in 100 % of the mice, it was only partially effective in the EAE model in common marmosets (Callithrix jacchus), a small-bodied Neotropical primate.
View Article and Find Full Text PDFExperimental autoimmune encephalomyelitis (EAE) in the common marmoset, a small-bodied Neotropical primate, is a well-known and validated animal model for multiple sclerosis (MS). This model can be used for exploratory research, i.e.
View Article and Find Full Text PDF