Publications by authors named "Jordi Rodrigo"

We report here the synthesis, the biological evaluation and the molecular modeling studies of new imidazo[1,2-a]pyridines derivatives designed as potent kinase inhibitors. This collection was obtained from 2-aminopyridines and 2-bromoacetophenone which afforded final compound in only one step. The bioactivity of this family of new compounds was tested using protein kinase and ATP competition assays.

View Article and Find Full Text PDF

Potent anticancer 4-arylchromene agents 6, as restricted isoCA-4 analogues, were prepared with excellent yields by a rapid and versatile synthetic pathway. First, in the presence of PTSA in EtOH, a variety of arylalkynols 9 were transformed into substituted 4-chromanones 10 in a one pot procedure which include regioselective arylalkynols hydration, alcohol etherification, MOM-cleavage, and cyclization. Further palladium coupling reactions, using aryl halides and N-tosylhydrazones 11 gave access to a small library of functionalized 4-arylchromenes 6 with good yields.

View Article and Find Full Text PDF

Type 4 metabotropic glutamate (mGlu4) receptors are emerging targets for the treatment of various disorders. Accordingly, numerous mGlu4-positive allosteric modulators (PAMs) have been identified, some of which also display agonist activity. To identify the structural bases for their allosteric action, we explored the relationship between the binding pockets of mGlu4 PAMs with different chemical scaffolds and their functional properties.

View Article and Find Full Text PDF

We describe the synthesis of a library of new pseudopeptides and their inhibitory activity of the rabbit 20S proteasome chymotrypsin-like (ChT-L) activity. We replaced a natural α-amino acid by an α- or a β-hydrazino acid and obtained inhibitors of proteasome up to a submicromolar range (0.7 μM for molecule 24b).

View Article and Find Full Text PDF

A series of novel benzoxepins 6 was designed and prepared as rigid-isoCA-4 analogs according to a convergent strategy using the coupling of N-tosylhydrazones with aryl iodides under palladium catalysis. The most potent compound 6b, having the greatest resemblance to CA-4 and isoCA-4 displayed antiproliferative activity at nanomolar concentrations against various cancer cell lines and inhibited tubulin assembly at a micromolar range. In addition, benzoxepin 6b led to the arrest of HCT116, K562, H1299 and MDA-MB231 cancer cell lines in the G2/M phase of the cell cycle, and strongly induced apoptosis at low concentrations.

View Article and Find Full Text PDF

We have designed and synthesized new molecular tongs based on a rigid naphthalene scaffold and evaluated their antidimer activity on HIV-1 protease (PR). We inserted carbonylhydrazide and oligohydrazide (azatide) fragments into their peptidomimetic arms to reduce hydrophobicity and increase metabolic stability. These fragments are designed to disrupt the protein-protein interactions by reproducing the hydrogen bond pattern found in the antiparallel β-sheet formed between the N- and C-ends of the two monomers in the native PR.

View Article and Find Full Text PDF

A novel series of dihydronaphtalene, tetrahydronaphtalene and naphtalene derivatives as restricted analogues of isoCA-4 were designed, synthesized and evaluated for their anticancer properties. High cell growth inhibition against four tumour cell lines was observed at a nanomolar level with dihydronaphtalenes 1d, e and 1h, tetrahydronaphtalene 2c and naphtalene 3c. Structure-activity relationships are also considered.

View Article and Find Full Text PDF

Zanthoxylum chiloperone var. angustifolium root bark was studied with the aim of finding novel molecules able to overcome cancer stem cell chemoresistance. Purification of a methanol-soluble extract resulted in the isolation of a known pyranocoumarin, trans-avicennol (1).

View Article and Find Full Text PDF

A novel class of isocombretastatin A-4 (isoCA-4) analogues with modifications at the 3'-position of the B-ring by replacement with C-linked substituents was studied. Exploration of the structure-activity relationships of theses analogues led to the identification of several compounds that exhibit excellent antiproliferative activities in the nanomolar concentration range against H1299, MDA-MB231, HCT116, and K562 cancer cell lines; they also inhibit tubulin polymerization with potency similar to that of isoCA-4. 1,1-Diarylethylenes 8 and 17, respectively with (E)-propen-3-ol and propyn-3-ol substituents at the 3'-position of the B-ring, proved to be the most active in this series.

View Article and Find Full Text PDF

The potential of an in situ photopolymerized hexylacrylate-based monolithic stationary phase-bearing sulfonic acid groups was investigated by studying the chromatographic retention of small structurally related peptides (enkephalins) by nano-LC. Several retention mechanisms were highlighted. First, a reverse-phase chromatographic behavior toward neutral solutes due to hexylacrylate-moieties was demonstrated.

View Article and Find Full Text PDF

The binding modes of noncompetitive GABA(A)-channel blockers were re-examined taking into account the recent description of the 3D structure of prokaryotic pentameric ligand-gated ion channels, which provided access to new mammalian or insect GABA receptor models, emphasizing their transmembrane portion. Two putative binding modes were deciphered for this class of compounds, including the insecticide fipronil, located nearby either the intra- or the extracellular part of the membrane, respectively. These results are in full agreement with previously described affinity-labeling reactions performed with GABA(A) noncompetitive blockers (Perret et al.

View Article and Find Full Text PDF

Pim-1 kinase is a cytoplasmic serine/threonine kinase that controls programmed cell death by phosphorylating substrates that regulate both apoptosis and cellular metabolism. A series of 2-styrylquinolines and quinoline-2-carboxamides has been identified as potent inhibitors of the Pim-1 kinase. The 8-hydroxy-quinoline 7-carboxylic acid moiety appeared to be a crucial pharmacophore for activity.

View Article and Find Full Text PDF

Very few nonpeptide oxytocin agonists have currently been reported, and none of them seem suitable for the in vivo investigation of the oxytocin mediated functions. In an attempt to rationalize the design of better tools, we have systematically studied the structural determinants of the affinity and efficacy of representative ligands of the V(1a), V(2), and OT receptor subtypes. Despite apparently obvious similarity between the ligand structures on one hand, and between the receptor subtypes on the other hand, the binding affinity and the functional activity profiles of truncated and hybrid ligands highlight the subtlety of ligand-receptor interactions for obtaining nonpeptide OT receptor agonists.

View Article and Find Full Text PDF

Background And Purpose: Human and rat 5-HT(7) receptors were studied with a particular emphasis on the molecular interactions involved in ligand binding, searching for an explanation to the interspecies selectivity observed for a set of compounds. We performed affinity studies, molecular modelling and site-directed mutagenesis, with special focus on residue Phe(7.38) of the human 5-HT(7) receptor [Cys(7.

View Article and Find Full Text PDF

Human urotensin-II (hU-II) is a cyclic peptide that plays a central role in cardiovascular homeostasis and is considered to be the most potent mammalian vasoconstrictor identified to date. It is a natural ligand of the human urotensin-II (hUT-II) receptor, a member of the family of rhodopsin-like G-protein-coupled receptors. To understand the molecular interactions of hU-II and certain antagonists with the hUT-II receptor, a model of the hUT-II receptor in an active conformation with all its connecting loops was constructed by homology modeling.

View Article and Find Full Text PDF

Starting from the 2.8-A resolution x-ray structure of bovine rhodopsin, three-dimensional molecular models of the complexes between arginine vasopressin and two receptor subtypes (V1a, V1b) have been built. Amino acid sequence alignment and docking studies suggest that four key residues (1.

View Article and Find Full Text PDF

The amino acid sequences of 369 human nonolfactory G-protein-coupled receptors (GPCRs) have been aligned at the seven transmembrane domain (TM) and used to extract the nature of 30 critical residues supposed--from the X-ray structure of bovine rhodopsin bound to retinal--to line the TM binding cavity of ground-state receptors. Interestingly, the clustering of human GPCRs from these 30 residues mirrors the recently described phylogenetic tree of full-sequence human GPCRs (Fredriksson et al., Mol Pharmacol 2003;63:1256-1272) with few exceptions.

View Article and Find Full Text PDF

The structural reorganizations occurring on the nicotinic acetylcholine receptor (nAChR) during activation and subsequent desensitization have been investigated through time-resolved photoaffinity labeling using a photoactivatable nicotinic agonist. [(3)H]AC5 is a photosensitive nicotinic probe with high affinity for the desensitized state of the Torpedo marmorata receptor (K(D) = 5 nM) that displays full agonist activity on the Torpedo californica receptor expressed in oocytes (EC(50) = 1.2 microM).

View Article and Find Full Text PDF

Eight docking programs (DOCK, FLEXX, FRED, GLIDE, GOLD, SLIDE, SURFLEX, and QXP) that can be used for either single-ligand docking or database screening have been compared for their propensity to recover the X-ray pose of 100 small-molecular-weight ligands, and for their capacity to discriminate known inhibitors of an enzyme (thymidine kinase) from randomly chosen "drug-like" molecules. Interestingly, both properties are found to be correlated, since the tools showing the best docking accuracy (GLIDE, GOLD, and SURFLEX) are also the most successful in ranking known inhibitors in a virtual screening experiment. Moreover, the current study pinpoints some physicochemical descriptors of either the ligand or its cognate protein-binding site that generally lead to docking/scoring inaccuracies.

View Article and Find Full Text PDF

Cyproheptadine is one of the compounds exhibiting the highest activity at 5-HT2B receptors. In a previous work we analysed the relevance of the amino group in diphenylmethylenepiperidines (DPMP), which are open cyproheptadine analogues. Only compounds containing N-H or N-methyl motifs, showed significant 5-HT2B activity.

View Article and Find Full Text PDF

A series of 52 conformationally constrained butyrophenones have been synthesized and pharmacologically tested as antagonists at 5-HT(2A), 5-HT(2B), and 5-HT(2C) serotonin receptors, useful for dissecting the role of each 5-HT(2) subtype in pathophysiology. These compounds were also a consistent set for the identification of structural features relevant to receptor recognition and subtype discrimination. Six compounds were found highly active (pK(i) > 8.

View Article and Find Full Text PDF