Publications by authors named "Jordi Robles"

Isothermal titration calorimetry (ITC) is a powerful technique able to evaluate the energetics of target-drug binding within the context of drug discovery. In this work, the interactions of RNAs reproducing bacterial and human ribosomal A-site, with two well-known antibiotic aminoglycosides, Paromomycin and Neomycin, as well as several Neomycin-dinucleotide and -diPNA conjugates, have been evaluated by ITC and the corresponding thermodynamic quantities determined. The comparison of the thermodynamic data of aminoglycosides and their chemical analogues allowed to select Neomycin-diPNA conjugates as the best candidates for antimicrobial activity.

View Article and Find Full Text PDF

The internal ribosome entry site (IRES) element located at the 5'untranslated genomic region of various RNA viruses mediates cap-independent initiation of translation. Picornavirus IRES activity is highly dependent on both its structural organization and its interaction with host factors. Small molecules able to interfere with RNA function are valuable candidates for antiviral agents.

View Article and Find Full Text PDF

An important goal of nanotechnology is the application of individual molecule handling techniques to the discovery of potential new therapeutic agents. Of particular interest is the search for new inhibitors of metabolic routes exclusive of human pathogens, such as the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway essential for the viability of most human pathogenic bacteria and of the malaria parasite. Using atomic force microscopy single-molecule force spectroscopy (SMFS), we have probed at the single-molecule level the interaction of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which catalyzes the first step of the MEP pathway, with its two substrates, pyruvate and glyceraldehyde-3-phosphate.

View Article and Find Full Text PDF

Melting temperatures of DNA duplexes containing the phenoxazine (P) and G-clamp (X) cytosine analogues exhibited a strong and unusual dependence on the nucleoside flanking the modified nucleobase, and the same trend was observed in PNA-DNA duplexes incorporating X in the PNA chain. Molecular dynamics simulations of the DNA duplexes show that generalized stacking (including secondary interactions of the ammonium group of X) and hydrogen bonding are good descriptors of the different duplex stabilities.

View Article and Find Full Text PDF

Syntheses of the protected amino- and guanidino-G-clamp PNA monomers, 9a and 9b, respectively, have been accomplished in eight steps from 5-bromouracil. Enhanced stacking interactions and additional hydrogen bonds with guanine should increase the affinity of PNAs incorporating these cytosine analogues for their complementary strands. [reaction: see text]

View Article and Find Full Text PDF

A fluorescent Hoechst 33258 derivative has been prepared in which a hexa(ethylene glycol) linker is attached to the terminal phenol residue. Conjugation of this derivative to DNA sequences is accomplished by a reversed coupling protocol, one in which the 5'-terminal nucleoside residue of a fully protected DNA sequence is converted to a terminal phosphoramidite. In the presence of the Hoechst derivative and tetrazole the final coupling reaction is achieved to generate the conjugated nucleic acid.

View Article and Find Full Text PDF