Publications by authors named "Jordi Pont-Tuset"

This paper proposes Panoptic Narrative Grounding, a spatially fine and general formulation of the natural language visual grounding problem. We establish an experimental framework for the study of this new task, including new ground truth and metrics. We propose PiGLET, a novel multi-modal Transformer architecture to tackle the Panoptic Narrative Grounding task, and to serve as a stepping stone for future work.

View Article and Find Full Text PDF

In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients.

View Article and Find Full Text PDF

We present Convolutional Oriented Boundaries (COB), which produces multiscale oriented contours and region hierarchies starting from generic image classification Convolutional Neural Networks (CNNs). COB is computationally efficient, because it requires a single CNN forward pass for multi-scale contour detection and it uses a novel sparse boundary representation for hierarchical segmentation; it gives a significant leap in performance over the state-of-the-art, and it generalizes very well to unseen categories and datasets. Particularly, we show that learning to estimate not only contour strength but also orientation provides more accurate results.

View Article and Find Full Text PDF

We propose a unified approach for bottom-up hierarchical image segmentation and object proposal generation for recognition, called Multiscale Combinatorial Grouping (MCG). For this purpose, we first develop a fast normalized cuts algorithm. We then propose a high-performance hierarchical segmenter that makes effective use of multiscale information.

View Article and Find Full Text PDF

This paper tackles the supervised evaluation of image segmentation and object proposal algorithms. It surveys, structures, and deduplicates the measures used to compare both segmentation results and object proposals with a ground truth database; and proposes a new measure: the precision-recall for objects and parts. To compare the quality of these measures, eight state-of-the-art object proposal techniques are analyzed and two quantitative meta-measures involving nine state of the art segmentation methods are presented.

View Article and Find Full Text PDF