Have you ever taken a disputed decision by tossing a coin and checking its landing side? This ancestral "heads or tails" practice is still widely used when facing undecided alternatives since it relies on the intuitive fairness of equiprobability. However, it critically disregards an interesting third outcome: the possibility of the coin coming at rest on its edge. Provided this evident yet elusive possibility, previous works have already focused on capturing all three landing probabilities of thick coins, but have only succeeded computationally.
View Article and Find Full Text PDFMulticellular entities are characterized by intricate spatial patterns, intimately related to the functions they perform. These patterns are often created from isotropic embryonic structures, without external information cues guiding the symmetry breaking process. Mature biological structures also display characteristic scales with repeating distributions of signals or chemical species across space.
View Article and Find Full Text PDFLiquid neural networks (or 'liquid brains') are a widespread class of cognitive living networks characterized by a common feature: the agents (ants or immune cells, for example) move in space. Thus, no fixed, long-term agent-agent connections are maintained, in contrast with standard neural systems. How is this class of systems capable of displaying cognitive abilities, from learning to decision-making? In this paper, the collective dynamics, memory and learning properties of liquid brains is explored under the perspective of statistical physics.
View Article and Find Full Text PDFLife evolved on our planet by means of a combination of Darwinian selection and innovations leading to higher levels of complexity. The emergence and selection of replicating entities is a central problem in prebiotic evolution. Theoretical models have shown how populations of different types of replicating entities exclude or coexist with other classes of replicators.
View Article and Find Full Text PDFMutualistic networks have been shown to involve complex patterns of interactions among animal and plant species, including a widespread presence of nestedness. The nested structure of these webs seems to be positively correlated with higher diversity and resilience. Moreover, these webs exhibit marked measurable structural patterns, including broad distributions of connectivity, strongly asymmetrical interactions and hierarchical organization.
View Article and Find Full Text PDF