Inflammatory diseases of the digestive tract, including inflammatory bowel disease, cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in inflammatory bowel disease patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model.
View Article and Find Full Text PDFInflammatory diseases of the digestive tract, including inflammatory bowel disease (IBD), cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in IBD patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model.
View Article and Find Full Text PDFReversing the immunosuppressive nature of the tumor microenvironment is critical for the successful treatment of cancers with immunotherapy drugs. Murine cancer models are extremely limited in their diversity and suffer from poor translation to the clinic. To serve as a more physiological preclinical model for immunotherapy studies, this protocol has been developed to evaluate the treatment of human tumors in a mouse reconstituted with a human immune system.
View Article and Find Full Text PDFMetabolic changes associated with tissue inflammation result in significant extracellular acidosis (EA). Within mucosal tissues, intestinal epithelial cells (IEC) have evolved adaptive strategies to cope with EA through the up-regulation of SLC26A3 to promote pH homeostasis. We hypothesized that EA significantly alters IEC gene expression as an adaptive mechanism to counteract inflammation.
View Article and Find Full Text PDFDuring episodes of acute inflammation, polymorphonuclear leukocytes (PMNs) are actively recruited to sites of inflammation or injury where they provide anti-microbial and wound-healing functions. One enzyme crucial for fulfilling these functions is myeloperoxidase (MPO), which generates hypochlorous acid from Cl and hydrogen peroxide. The potential exists, however, that uncontrolled the extracellular generation of hypochlorous acid by MPO can cause bystander tissue damage and inhibit the healing response.
View Article and Find Full Text PDFPrimary sclerosing cholangitis (PSC) is a progressive fibrosing cholestatic liver disease that is strongly associated with inflammatory bowel disease (IBD). PSC-associated IBD (PSC-IBD) displays a unique phenotype characterized by right-side predominant colon inflammation and increased risk of colorectal cancer compared to non-PSC-IBD. The frequent association and unique phenotype of PSC-IBD suggest distinctive underlying disease mechanisms from other chronic liver diseases or IBD alone.
View Article and Find Full Text PDFAcute intestinal inflammation includes the early accumulation of neutrophils (PMN). Based on recent evidence that PMN infiltration "imprints" changes in the local tissue environment through local oxygen depletion and the release of adenine nucleotides, we hypothesized that the interaction between transmigrating PMN and intestinal epithelial cells (IECs) results in inflammatory acidification of the tissue. Using newly developed tools, we revealed that active PMN transepithelial migration (TEM) significantly acidifies the local microenvironment, a decrease of nearly 2 pH units.
View Article and Find Full Text PDFExtracellular adenosine signaling is established as a protective component in mucosal inflammatory responses. The sources of extracellular adenosine include enzymatic processing from nucleotides, such as ATP and AMP, that can be liberated from a variety of cell types, including infiltrating leukocytes. Here we demonstrate that activated human neutrophils are a source of diadenosine triphosphate (Ap3A), providing an additional source of nucleotides during inflammation.
View Article and Find Full Text PDFIntestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking.
View Article and Find Full Text PDFInteractions between the gut microbiota and the host are important for health, where dysbiosis has emerged as a likely component of mucosal disease. The specific constituents of the microbiota that contribute to mucosal disease are not well defined. The authors sought to define microbial components that regulate homeostasis within the intestinal mucosa.
View Article and Find Full Text PDFCommensal interactions between the enteric microbiota and distal intestine play important roles in regulating human health. Short-chain fatty acids (SCFAs), such as butyrate, produced through anaerobic microbial metabolism represent a major energy source for the host colonic epithelium and enhance epithelial barrier function through unclear mechanisms. Separate studies revealed that the epithelial anti-inflammatory IL-10 receptor α subunit (IL-10RA) is also important for barrier formation.
View Article and Find Full Text PDFThe intestinal mucosa provides a selective barrier between the anaerobic lumen and a highly metabolic lamina propria. A number of recent studies indicate that acute inflammation of the mucosa can result in tissue hypoxia and associated shifts in tissue metabolism. The activation of hypoxia-inducible factor (HIF) under these conditions has been demonstrated to function as an endogenous molecular cue to promote resolution of inflammation, particularly through the orchestration of barrier repair toward homeostasis.
View Article and Find Full Text PDFCrohn's disease and ulcerative colitis, the two major forms of idiopathic inflammatory bowel disease (IBD), are thought to occur through a loss of intestinal barrier leading to an inappropriate immune response toward intestinal microbiota. While genome-wide association studies (GWAS) have provided much information about susceptibility loci associated with these diseases, the etiology of IBD is still unknown. Metabolomic analysis allows for the comprehensive measurement of multiple small molecule metabolites in biological samples.
View Article and Find Full Text PDFThe idiopathic inflammatory bowel diseases, which include Crohn's disease and ulcerative colitis, are multifactorial chronic conditions that result in numerous perturbations of metabolism in the gastrointestinal mucosa. Thus, methodologies for the qualitative and quantitative analysis of small molecule metabolites in mucosal tissues are important for further elucidation of mechanisms driving inflammation and the metabolic consequences of inflammation. High-performance liquid chromatography (HPLC) is a ubiquitous analytical technique that can be adapted for both targeted and non-targeted metabolomic analysis.
View Article and Find Full Text PDFSecreted toxin B (TcdB) substantially contributes to the pathology observed during Clostridium difficile infection. To be successfully incorporated into a vaccine, TcdB-based immunogens must stimulate the production of neutralizing antibody (Ab)-encoding memory B cells (Bmem cells). Despite numerous investigations, a clear analysis of Bmem cellular responses following vaccination against TcdB is lacking.
View Article and Find Full Text PDFInteractions between the microbiota and distal gut are fundamental determinants of human health. Such interactions are concentrated at the colonic mucosa and provide energy for the host epithelium through the production of the short-chain fatty acid butyrate. We sought to determine the role of epithelial butyrate metabolism in establishing the austere oxygenation profile of the distal gut.
View Article and Find Full Text PDFThe gastrointestinal mucosa has proven to be an interesting tissue for which to investigate disease-related metabolism. In this review, we outline some evidence that implicates metabolic signaling as important features of barrier in the healthy and disease. Studies from cultured cell systems, animal models and human patients have revealed that metabolites generated within the inflammatory microenvironment are central to barrier regulation.
View Article and Find Full Text PDFThe sequence, activity, and antigenicity of TcdB varies between different strains of Clostridium difficile. As a result, ribotype-specific forms of TcdB exhibit different toxicities and are not strongly cross-neutralized. Using a combination of biochemical and immunological approaches, we compared two important variants of TcdB (TcdB012 and TcdB027) to identify the mechanisms through which sequence differences alter epitopes and activity of the toxin.
View Article and Find Full Text PDFThe Clostridium difficile exotoxin, TcdB, which is a major virulence factor, varies between strains of this pathogen. Herein, we show that TcdB from the epidemic BI/NAP1/027 strain of C. difficile is more lethal, causes more extensive brain hemorrhage, and is antigenically variable from TcdB produced by previously studied strains of this pathogen (TcdB003).
View Article and Find Full Text PDFTcdB, an intracellular bacterial toxin that inactivates small GTPases, is a major Clostridium difficile virulence factor. Recent studies have found that TcdB produced by emerging/hypervirulent strains of C. difficile is more potent than TcdB from historical strains, and in the current work, studies were performed to investigate the underlying mechanisms for this change in TcdB toxicity.
View Article and Find Full Text PDFHypervirulent strains of Clostridium difficile have emerged over the past decade, increasing the morbidity and mortality of patients infected by this opportunistic pathogen. Recent work suggested the major C. difficile virulence factor, TcdB, from hypervirulent strains (TcdB(HV)) was more cytotoxic in vitro than TcdB from historical strains (TcdB(HIST)).
View Article and Find Full Text PDF