Helium, the second most abundant element in the universe, exhibits an extremely large electronic band gap of about 20 eV at ambient pressures. While the metallization pressure of helium has been accurately determined, thus far little attention has been paid to the specific mechanisms driving the band-gap closure and electronic properties of this quantum crystal in the terapascal regime (1 TPa = 10 Mbar). Here, we employ density functional theory and many-body perturbation calculations to fill up this knowledge gap.
View Article and Find Full Text PDFThe mass transport properties along dislocation cores in hcp ^{4}He are revisited by considering two types of edge dislocations as well as a screw dislocation, using a fully correlated quantum simulation approach. Specifically, we employ the zero-temperature path-integral ground state (PIGS) method together with ergodic sampling of the permutation space to investigate the fundamental dislocation core structures and their off-diagonal long-range order properties. It is found that the Bose-Einstein condensate fraction of such defective ^{4}He systems is practically null (≤10^{-6}), just as in the bulk defect-free crystal.
View Article and Find Full Text PDFA universal relationship between scaled size and scaled energy is explored in five-body self-bound quantum systems. The ground-state binding energy and structure properties are obtained by means of the diffusion Monte Carlo method. We use pure estimators to eliminate any residual bias in the estimation of the cluster size.
View Article and Find Full Text PDFThe Bose polaron has attracted theoretical and experimental interest because the mobile impurity is surrounded by a bath that undergoes a superfluid-to-normal phase transition. Although many theoretical works have studied this system in its ground state, only a few analyze its behavior at finite temperature. We have studied the effect of temperature on a Bose polaron system performing ab initio path integral Monte Carlo simulations.
View Article and Find Full Text PDFHelium is recognized as a model system for the study of phase transitions. Of particular interest is the superfluid phase in two dimensions. We report measurements on superfluid helium films adsorbed on the surface of a suspended carbon nanotube.
View Article and Find Full Text PDFUniversal relationship of scaled size and scaled energy, which was previously established for two- and three-body systems in their ground state, is examined for four-body systems, using Quantum Monte Carlo simulations. We study in detail the halo region, in which systems are extremely weakly bound. Strengthening the interparticle interaction we extend the exploration all the way to classical systems.
View Article and Find Full Text PDFThe universality of quantum halo states enables a comparison of systems from different fields of physics, as demonstrated in two- and three-body clusters. In the present work, we studied weakly bound helium tetramers in order to test whether some of these four-body realistic systems qualify as halos. Their ground-state binding energies and structural properties were thoroughly estimated using the diffusion Monte Carlo method with pure estimators.
View Article and Find Full Text PDF