Publications by authors named "Jordi Barretina"

Physical exercise has been shown to induce epigenetic modifications with various health implications, directly affect DNA methylation (DNAm), as well as reverse the epigenetic age. Hence, we aimed to identify differential methylation changes and assess the epigenetic age in the saliva of 7-9-year-old school children following a 3-month integrated neuromuscular training (INT), as well as to explore if any of the methylation changes are in core genes. Core genes are defined as genes of high relevance and essential importance within the human genome.

View Article and Find Full Text PDF

Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.

View Article and Find Full Text PDF

Anti-tumor efficacy of targeted therapies is variable across patients and cancer types. Even in patients with initial deep response, tumors are typically not eradicated and eventually relapse. To address these challenges, we present a systematic screen for targets that limit the anti-tumor efficacy of EGFR and ALK inhibitors in non-small cell lung cancer and BRAF/MEK inhibitors in colorectal cancer.

View Article and Find Full Text PDF

Aging biology entails a cell/tissue deregulated metabolism that affects all levels of biological organization. Therefore, the application of "omic" techniques that are closer to phenotype, such as metabolomics, to the study of the aging process should be a turning point in the definition of cellular processes involved. The main objective of the present study was to describe the changes in plasma metabolome associated with biological aging and the role of sex in the metabolic regulation during aging.

View Article and Find Full Text PDF

Current COVID-19 vaccines have been associated with a decline in infection rates, prevention of severe disease, and a decrease in mortality rates. However, SARS-CoV-2 variants are continuously evolving, and development of new accessible COVID-19 vaccines is essential to mitigate the pandemic. Here, we present data on preclinical studies in mice of a receptor-binding domain (RBD)-based recombinant protein vaccine (PHH-1V) consisting of an RBD fusion heterodimer comprising the B.

View Article and Find Full Text PDF

The main aims of this systematic review with meta-analysis and meta-regression were to describe the effect of multidisciplinary neuromuscular and endurance interventions, including plyometric training, mixed strength and conditioning, HIIT basketball programs and repeated sprint training on youth basketball players considering age, competitive level, gender and the type of the intervention performed to explore a predictive model through a meta-regression analysis. A structured search was conducted following PRISMA guidelines and PICOS model in Medline (PubMed), Web of Science (WOS) and Cochrane databases. Groups of experiments were created according to neuromuscular power (vertical; NPV and horizontal; NPH) and endurance (E).

View Article and Find Full Text PDF

Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.

View Article and Find Full Text PDF

Understanding the brain changes occurring during aging can provide new insights for developing treatments that alleviate or reverse cognitive decline. Neurostimulation techniques have emerged as potential treatments for brain disorders and to improve cognitive functions. Nevertheless, given the ethical restrictions of neurostimulation approaches, in silico perturbation protocols based on causal whole-brain models are fundamental to gaining a mechanistic understanding of brain dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • Black women in the African diaspora face more aggressive breast cancer and higher death rates compared to white women, highlighting a significant health disparity.* -
  • Research of 97 breast cancers from Nigerian women reveals more genomic instability and unique mutations, including early GATA3 mutations, leading to an earlier diagnosis by about 10.5 years.* -
  • The study emphasizes the importance of including diverse populations in medical research and shows that identifying homologous recombination deficiency in tumors can help tailor effective treatments.*
View Article and Find Full Text PDF

KIT/PDGFRA oncogenic tyrosine kinase signaling is the central oncogenic event in most gastrointestinal stromal tumors (GIST), which are human malignant mesenchymal neoplasms that often feature myogenic differentiation. Although targeted inhibition of KIT/PDGFRA provides substantial clinical benefit, GIST cells adapt to KIT/PDGFRA driver suppression and eventually develop resistance. The specific molecular events leading to adaptive resistance in GIST remain unclear.

View Article and Find Full Text PDF

Background: Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits.

Methods: We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970).

View Article and Find Full Text PDF

Normal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state functional magnetic resonance imaging studies have found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of the studies have focused mainly on static functional connectivity.

View Article and Find Full Text PDF

Biomarkers of aging are urgently needed to identify individuals at high risk of developing age-associated disease or disability. Growing evidence from population-based studies points to whole-body magnetic resonance imaging's (MRI) enormous potential for quantifying subclinical disease burden and for assessing changes that occur with aging in all organ systems. The Aging Imageomics Study aims to identify biomarkers of human aging by analyzing imaging, biopsychosocial, cardiovascular, metabolomic, lipidomic, and microbiome variables.

View Article and Find Full Text PDF

Evolved resistance to tyrosine kinase inhibitor (TKI)-targeted therapies remains a major clinical challenge. In epidermal growth factor receptor (EGFR) mutant non-small-cell lung cancer (NSCLC), failure of EGFR TKIs can result from both genetic and epigenetic mechanisms of acquired drug resistance. Widespread reports of histologic and gene expression changes consistent with an epithelial-to-mesenchymal transition (EMT) have been associated with initially surviving drug-tolerant persister cells, which can seed bona fide genetic mechanisms of resistance to EGFR TKIs.

View Article and Find Full Text PDF

Somatic mutation signatures may represent footprints of genetic and environmental exposures that cause different cancer. Few studies have comprehensively examined their association with germline variants, and none in an indigenous African population. SomaticSignatures was employed to extract mutation signatures based on whole-genome or whole-exome sequencing data from female patients with breast cancer (TCGA, training set, n = 1,011; Nigerian samples, validation set, n = 170), and to estimate contributions of signatures in each sample.

View Article and Find Full Text PDF

Despite considerable efforts to identify cancer metabolic alterations that might unveil druggable vulnerabilities, systematic characterizations of metabolism as it relates to functional genomic features and associated dependencies remain uncommon. To further understand the metabolic diversity of cancer, we profiled 225 metabolites in 928 cell lines from more than 20 cancer types in the Cancer Cell Line Encyclopedia (CCLE) using liquid chromatography-mass spectrometry (LC-MS). This resource enables unbiased association analysis linking the cancer metabolome to genetic alterations, epigenetic features and gene dependencies.

View Article and Find Full Text PDF

Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers.

View Article and Find Full Text PDF
Article Synopsis
  • Racial and ethnic disparities in breast cancer mortality are increasing, yet genomic studies often overlook diverse populations, highlighting a gap in research.
  • The study analyzed 194 breast cancer patients from Nigeria alongside 1,037 patients from The Cancer Genome Atlas (TCGA), revealing that Nigerian tumors have distinct genomic features indicating more aggressive cancer biology.
  • Key findings include higher rates of specific mutations in Nigerian patients and the identification of novel genes linked to breast cancer, potentially paving the way for tailored treatments for underrepresented groups.
View Article and Find Full Text PDF

Non-small cell lung cancer patients carrying oncogenic EGFR mutations initially respond to EGFR-targeted therapy, but later elicit minimal response due to dose-limiting toxicities and acquired resistance. EGF816 is a novel, irreversible mutant-selective EGFR inhibitor that specifically targets EGFR-activating mutations arising de novo and upon resistance acquisition, while sparing wild-type (WT) EGFR. EGF816 potently inhibited the most common EGFR mutations L858R, Ex19del, and T790M in vitro, which translated into strong tumor regressions in vivo in several patient-derived xenograft models.

View Article and Find Full Text PDF

Background: Anaplastic lymphoma kinase (ALK) genomic alterations have emerged as a potent predictor of benefit from treatment with ALK inhibitors in several cancers. Currently, there is no information about ALK gene alterations in urothelial carcinoma (UC) and its correlation with clinical or pathologic features and outcome.

Methods: Samples from patients with advanced UC and correlative clinical data were collected.

View Article and Find Full Text PDF

Epigenetic dysregulation is an emerging hallmark of cancers. We developed a high-information-content mass spectrometry approach to profile global histone modifications in human cancers. When applied to 115 lines from the Cancer Cell Line Encyclopedia, this approach identified distinct molecular chromatin signatures.

View Article and Find Full Text PDF

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.

View Article and Find Full Text PDF