Major challenges in developing implanted neural stimulation devices are the invasiveness, complexity, and cost of the implantation procedure. Here, we report an injectable, nanofibrous 2D flexible hydrogel sheet-based neural stimulation device that can be non-invasively implanted via syringe injection for optoelectrical and biochemical dual stimulation of neuron. Specifically, methacrylated gelatin (GelMA)/alginate hydrogel nanofibers were mechanically reinforced with a poly(lactide-co-ε-caprolactone) (PLCL) core by coaxial electrospinning.
View Article and Find Full Text PDFPeripheral nerve regeneration with large defects needs innovative design of nerve guidance conduits (NGCs) which possess anisotropic guidance, electrical induction and right mechanical properties in one. Herein, we present, for the first time, facile fabrication and efficient neural differentiation guidance of anisotropic, conductive, self-snapping, hydrogel-based NGCs. The hydrogels were fabricated via crosslinking of graphitic carbon nitride (g-CN) upon exposure with blue light, incorporated with graphene oxide (GO).
View Article and Find Full Text PDFAiming at developing a moderate and efficient sono-photodynamic therapy for breast cancer, tissue engineering scaffolds may provide an easy and efficient strategy to eliminate serious side effects in conventional surgery or chemotherapy, and thus, they are highly desired. However, the development of ideal sono-photodynamic therapeutic scaffolds is always hindered by the poor stability and incompatibility between the different biomaterial components. Herein, the Food and Drug Administration (FDA)-approved sono/photosensitizer Chlorin e6 (Ce6) was successfully and tightly incorporated into electrospun polycaprolactone/gelatin (PG) scaffolds via positively charged protonated g-CN nanosheets (pCN).
View Article and Find Full Text PDFGreat research efforts have been invested in developing nerve guidance conduits (NGCs), which can direct axons advance and guide peripheral neural regeneration. Here, three different aspects of NGC design, namely anisotropy, photocatalytic stimulation and self-assembly at implantation site, were unitedly addressed. Firstly, melt electrowriting (MEW) was used to print anisotropic, microfibrous PCL architectures.
View Article and Find Full Text PDF