Purpose: Using machine learning, we developed a proprietary ultrasound software called the Spine Level Identification (SLIDE) system, which automatically identifies lumbar landmarks in real time as the operator slides the transducer over the lumber spine. Here, we assessed the agreement between SLIDE and manual palpation and traditional lumbar ultrasound (LUS) for determining the primary target L3-4 interspace.
Methods: Upon institutional ethics approval and informed consent, 76 healthy term parturients scheduled for elective Caesarean delivery were recruited.
Uncertainty of labels in clinical data resulting from intra-observer variability can have direct impact on the reliability of assessments made by deep neural networks. In this paper, we propose a method for modelling such uncertainty in the context of 2D echocardiography (echo), which is a routine procedure for detecting cardiovascular disease at point-of-care. Echo imaging quality and acquisition time is highly dependent on the operator's experience level.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2017
Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
July 2017
Purpose: Percutaneous spinal needle insertion procedures often require proper identification of the vertebral level to effectively and safely deliver analgesic agents. The current clinical method involves "blind" identification of the vertebral level through manual palpation of the spine, which has only 30% reported accuracy. Therefore, there is a need for better anatomical identification prior to needle insertion.
View Article and Find Full Text PDF