Multimodal cues can improve behavioral responses by enhancing the detection and localization of sensory cues and reducing response times. Across species, studies have shown that multisensory integration of visual and olfactory cues can improve response accuracy. However, in real-world settings, sensory cues are often noisy; visual and olfactory cues can be deteriorated, masked, or mixed, making the target cue less clear to the receiver.
View Article and Find Full Text PDFRecent work has indicated that anthropogenic pollution of floral-scent may have negative impacts on bumblebee foraging behavior. We need quantitative tools to both measure how much pollution of a learned floral-odor bumblebees can tolerate and identify which scent-pollutants are problematic. This study used encoding characteristics of insect olfactory systems to develop a new paradigm for quantifying complex odors.
View Article and Find Full Text PDFWhile the phrase 'foraging bumblebee' brings to mind a bumbling bee flying flower to flower in a sunny meadow, foraging is a complicated series of behaviors such as: locating a floral patch; selecting a flower-type; learning handling skills for pollen and nectar extraction; determining when to move-on from a patch; learning within-patch paths (traplining); and learning efficient hive-to-patch routes (spatial navigation). Thus the term 'forager' encompasses multiple distinct behaviors that rely on different sensory modalities. Despite a robust literature on bumblebee foraging behavior, few studies are directly relevant to sensory-guided search; i.
View Article and Find Full Text PDFDeclines in bumblebee populations have led to investigations into potential causes - including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e.
View Article and Find Full Text PDFHawkmoths rely on vision to track moving flowers during hovering-feeding bouts. Visually guided flight behaviors require a sensorimotor transformation, where motion information processed by the optic ganglia ultimately modifies motor axon activity. While a great deal is known about motion processing in the optic lobes of insects, there has been far less exploration into the visual information available to flight motor axons.
View Article and Find Full Text PDFVisual identification of targets is an important task for many animals searching for prey or conspecifics. Dragonflies utilize specialized optics in the dorsal acute zone, accompanied by higher-order visual neurons in the lobula complex, and descending neural pathways tuned to the motion of small targets. While recent studies describe the physiology of insect small target motion detector (STMD) neurons, little is known about the mechanisms that underlie their exquisite sensitivity to target motion.
View Article and Find Full Text PDFAs hovering feeders, hawkmoths cope with flower motions by tracking those motions to maintain contact with the nectary. This study examined the tracking, feeding and energetic performance of Manduca sexta feeding from flowers moving at varied frequencies and in different directions. In general we found that tracking performance decreased as frequency increased; M.
View Article and Find Full Text PDFThe lateral giant (LG)-mediated escape behavior of the crayfish habituates readily on repetitive sensory stimulation. Recent studies suggested that the biogenic amines serotonin and octopamine modulate the time course of recovery and/or re-depression of the LG response after habituation. However, little is known of how serotonin and octopamine effect LG habituation and what second-messenger cascades they may activate.
View Article and Find Full Text PDF