Di-isobutylaluminum hydride and tri-iso-butylaluminum (DIBAL 1, TIBAL 2) are shown to be efficient hydrogenation catalysts for a variety of imines at 100 °C and 100 atm of H2, operating via a hydroalumination/hydrogenolysis mechanism.
View Article and Find Full Text PDFIn this Article, we present our findings on the formation of metal sulfide nanocrystals from sulfur-alkylamine solutions. By pulsed field gradient diffusion NMR along with the standard toolbox of 1D and 2D NMR, we determined that sulfur-amine solutions used as a sulfur precursor exist as alkylammonium polysulfides at low temperatures. Upon heating to temperatures used in nanocrystal synthesis, the polysulfide ions react with excess amine to generate H(2)S, which combines with the metal precursor to form metal sulfide.
View Article and Find Full Text PDFHerein, we present the structural characterization of the core and surface of colloidally stable ultrathin bismuth sulfide (Bi(2)S(3)) nanowires using X-ray Absorption Spectroscopy (EXAFS and XANES), X-ray Photoelectron Spectroscopy (XPS), and Nuclear Magnetic Resonance (NMR). These three techniques allowed the conclusive structural characterization of the inorganic core as well as the coordination chemistry of the surface ligands of these structures, despite the absence of significant translational periodicity dictated by their ultrathin diameter (1.6 nm) and their polycrystallinity.
View Article and Find Full Text PDFUltrathin Bi₂S₃ nanowires undergo a pronounced photothermal response to irradiation from a commercial camera flash. Controlled nano-welding was shown by using single walled carbon nanotube mats as an electrically and thermally conductive substrate. The resulting welded nanowire film is denser and has significantly lower resistance than unflashed bilayer films.
View Article and Find Full Text PDF