Purpose Of Review: Molecular imaging has traditionally been used and interpreted primarily in the context of localized and relatively static neurochemical processes. New understanding of brain function and development of novel molecular imaging protocols and analysis methods highlights the relevance of molecular networks that co-exist and interact with functional and structural networks. Although the concept and evidence of disease-specific metabolic brain patterns has existed for some time, only recently has such an approach been applied in the neurotransmitter domain and in the context of multitracer and multimodal studies.
View Article and Find Full Text PDFExisting methods for voxelwise transient dopamine (DA) release detection rely on explicit kinetic modeling of the [C]raclopride PET time activity curve, which at the voxel level is typically confounded by noise, leading to poor performance for detection of low-amplitude DA release-induced signals. Here we present a novel data-driven, task-informed method-referred to as Residual Space Detection (RSD)-that transforms PET time activity curves to a residual space where DA release-induced perturbations can be isolated and processed. Using simulations, we demonstrate that this method significantly increases detection performance compared to existing kinetic model-based methods for low-magnitude DA release (simulated +100% peak increase in basal DA concentration).
View Article and Find Full Text PDF