Singlet fission (SF) and triplet-triplet annihilation upconversion (TTA-UC) nominally enable the interconversion of higher-energy singlet states with two lower-energy triplet states and vice versa, with both processes having envisaged application for enhanced solar power devices. The mechanism of SF/TTA-UC involves a complex array of different multiexcitonic triplet-pair states that are coupled by the exchange interaction to varying extents. In this work a family of bounded intramolecular SF materials, based upon the chromophore 1,6-diphenyl-1,3,5-hexatriene, were designed and synthesized.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
February 2022
The bimolecular recombination characteristics of conjugated polymer poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-:2',3'-]silole)-2,6-diyl-alt-(2,5-bis 3-tetradecylthiophen-2-yl thiazolo 5,4- thiazole)-2,5diyl] (PDTSiTTz) blended with the fullerene series PC60BM, ICMA, ICBA, and ICTA have been investigated using microsecond and femtosecond transient absorption spectroscopy, in conjunction with electroluminescence measurements and ambient photoemission spectroscopy. The non-Langevin polymer PDTSiTTz allows an inspection of intrinsic bimolecular recombination rates uninhibited by diffusion, while the low oscillator strengths of fullerenes allow polymer features to dominate, and we compare our results to those of the well-known polymer Si-PCPDTBT. Using μs-TAS, we have shown that the trap-limited decay dynamics of the PDTSiTTz polaron becomes progressively slower across the fullerene series, while those of Si-PCPDTBT are invariant.
View Article and Find Full Text PDFEfficient charge photogeneration in conjugated polymers typically requires the presence of a second component to act as electron acceptor. Here, we report a novel low band-gap conjugated polymer with a donor/orthogonal acceptor motif: poly-2,6-(4,4-dihexadecyl-4-cyclopenta [2,1-:3,4-']dithiophene)--2,6-spiro [cyclopenta[2,1-:3,4-']dithiophene-4,9'-fluorene]-2',7'-dicarbonitrile, referred to as . The role of the orthogonal acceptor is to spatially isolate the LUMO from the HOMO, allowing for negligible exchange energy between electrons in these orbitals and minimising the energy gap between singlet and triplet charge transfer states.
View Article and Find Full Text PDF