J Am Soc Mass Spectrom
December 2016
The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e.
View Article and Find Full Text PDFRationale: The lower levels of adventitious H2 O in a linear ion trap allow the fragmentation reactions of [UO2 OCH3 ](+) and [UO2 OCH2 CH3 ](+) to be examined in detail.
Methods: Methanol- and ethanol-coordinated UO2 (2+) -alkoxide precursors were generated by electrospray ionization (ESI). Multiple-stage tandem mass spectrometry (MS(n) ) and collision-induced dissociation (CID) were performed using a linear ion trap mass spectrometer.
Rationale: Ion trap mass spectrometry was used to study the reactivity of species derived from gas-phase, mixed-metal complexes, [Ag2 Xx(Gly-H)3 ](+) , where Xx = Ca, Mg, Sr and Ag, and in particular the apparent activation of an H2 O ligand added during an ion-molecule reaction.
Methods: Precursor [Ag2 Xx(Gly-H)3 ](+) complexes were formed by electrospray ionization (ESI) using spray solutions in which AgNO3 , XxNO3 and glycine were mixed in a 1:1:3 molar ratio. Specific species for study of ion-molecule reactions were created in a "top down" fashion using collision-induced dissociation (CID).