We recently reported a chiral phosphoric acid (CPA) catalyzed enantioselective photomediated ring contraction of piperidines and other saturated heterocycles. By extruding a single heteroatom from a ring, this transformation builds desirable C(sp)-C(sp) bonds in the ring contracted products; however, the origins of enantioselectivity remain poorly understood. In this work, enantioselectivity of the ring contraction has been explored across an expanded structurally diverse substrate scope, revealing a wide range of enantioselectivities (0-99%) using two distinct CPA catalysts.
View Article and Find Full Text PDFThe widespread success of BINOL-chiral phosphoric acids (CPAs) has led to the development of several high molecular weight, sterically encumbered variants. Herein, we disclose an alternative, minimalistic chiral phosphoric acid backbone incorporating only a single instance of point chirality. Data science techniques were used to select a diverse training set of catalysts, which were benchmarked against the transfer hydrogenation of an 8-aminoquinoline.
View Article and Find Full Text PDFHerein, we report a reaction that selectively generates 3-arylpyridine and quinoline motifs by inserting aryl carbynyl cation equivalents into pyrrole and indole cores, respectively. By employing α-chlorodiazirines as thermal precursors to the corresponding chlorocarbenes, the traditional haloform-based protocol central to the parent Ciamician-Dennstedt rearrangement can be modified to directly afford 3-(hetero)arylpyridines and quinolines. Chlorodiazirines are conveniently prepared in a single step by oxidation of commercially available amidinium salts.
View Article and Find Full Text PDF