Publications by authors named "Jordan P Crago"

Per- and polyfluoroalkyl substances (PFAS) are globally distributed and present in nearly every environmental compartment. Characterizing the chronic toxicity of individual PFAS compounds and mixtures is necessary because many have been reported to cause adverse health effects. To derive toxicity reference values (TRVs) and conduct ecotoxicological risk assessments (ERAs) of PFAS-contaminated ecosystems for wildlife, species-specific PFAS chronic toxicity values (CTVs) are needed.

View Article and Find Full Text PDF

Terrestrial toxicology data are limited for comprehensive ecotoxicological risk assessment of ecosystems contaminated by per- and polyfluoroalkyl substances (PFAS) partly because of their existence as mixtures in the environment. This complicates logistical dose-response modeling and establishment of a threshold value characterizing the chronic toxicity of PFAS to ecological receptors. We examined reproduction, growth, and survival endpoints using a combination of hypothesis testing and logistical dose-response modeling of northern bobwhite quail (Colinus virginianus) exposed to perfluorohexanoic acid (PFHxA) alone and to PFHxA in a binary mixture with perfluorooctane sulfonic acid (PFOS) via the drinking water.

View Article and Find Full Text PDF

In the present study, the developmental (including fertility) and endocrine-disruptive effects in relation to chemical burden in male and female Nile crocodiles (Crocodylus niloticus), from a commercial crocodile farm in the Brits district, South Africa, exposed to various anthropogenic aquatic contaminants from the natural environment was investigated. Hepatic transcript levels for vitellogenin (Vtg), zona pellucida (ZP) and ERα (also in gonads) were analyzed using real-time PCR. Plasma estradiol-17β (E2), testosterone (T) and 11-ketotestosterone (11-KT) were analyzed using enzyme immunoassay.

View Article and Find Full Text PDF

The monitoring of pharmaceuticals and personal care products (PPCPs) has focused on the distribution in rivers and small lakes, but data regarding their occurrence and effects in large lake systems, such as the Great Lakes, are sparse. Wastewater treatment processes have not been optimized to remove influent PPCPs and are a major source of PPCPs in the environment. Furthermore, PPCPs are not currently regulated in wastewater effluent.

View Article and Find Full Text PDF

Current wastewater treatment processes are insufficient at removing many pharmaceutical and personal care products (PPCPs) from wastewater and it is necessary to identify the chemical characteristics that determine their fate. Models that predict the fate of various chemicals lack verification using in situ data, particularly for PPCPs. BIOWIN4 is a quantitative structure-activity relationship (QSAR) model that has been proposed to estimate the removal of PPCPs from wastewater, but data verifying the accuracy of its predictions is limited.

View Article and Find Full Text PDF