Cancer cells survive and adapt to many types of stress including hypoxia, nutrient deprivation, metabolic, and oxidative stress. These stresses are sensed by diverse cellular signaling processes, leading to either degradation of mitochondria or alleviation of mitochondrial stress. This review discusses signaling during sensing and mitigation of stress involving mitochondrial communication with the endoplasmic reticulum, and how retrograde signaling upregulates the mitochondrial stress response to maintain mitochondrial integrity.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2020
Cytochrome c (Cyt c) released from mitochondria interacts with Apaf-1 to form the heptameric apoptosome, which initiates the caspase cascade to execute apoptosis. Although lysine residue at 72 (K72) of Cyt c plays an important role in the Cyt c-Apaf-1 interaction, the underlying mechanism of interaction between Cyt c and Apaf-1 is still not clearly defined. Here we identified multiple lysine residues including K72, which are also known to interact with ATP, to play a key role in Cyt c-Apaf-1 interaction.
View Article and Find Full Text PDFBackground: Interleukin-8 (IL-8) and heat shock protein 60 (Hsp60) play crucial roles in cell survival and maintenance of cellular homoeostasis. However, cross talks between these two proteins are not defined.
Methods: IL-8 expression in tumour tissue sections was analysed by immunohistochemistry.
Although African-American (AA) patients with prostate cancer tend to develop greater therapeutic resistance and faster prostate cancer recurrence compared with Caucasian-American (CA) men, the molecular mechanisms of this racial prostate cancer disparity remain undefined. In this study, we provide the first comprehensive evidence that cytochrome deficiency in AA primary tumors and cancer cells abrogates apoptosome-mediated caspase activation and contributes to mitochondrial dysfunction, thereby promoting therapeutic resistance and prostate cancer aggressiveness in AA men. In AA prostate cancer cells, decreased nuclear accumulation of nuclear respiration factor 1 (Nrf1) and its subsequent loss of binding to the cytochrome promoter mediated cytochrome deficiency.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is highly aggressive disease and current treatment regimens fail to effectively cure PDAC. Development of resistance to current therapy is one of the key reasons for this outcome. Nimbolide (NL), a triterpenoid obtained from Azadirachta indica, exhibits anticancer properties in various cancer including PDAC cells.
View Article and Find Full Text PDFMetastatic castration-resistant prostate cancer (mCRPC) remains incurable and is one of the leading causes of cancer-related death among American men. Therefore, detection of prostate cancer (PCa) at early stages may reduce PCa-related mortality in men. We show that lipid quantification by vibrational Raman Microspectroscopy and Biomolecular Component Analysis may serve as a potential biomarker in PCa.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2017
Abrogation of endoplasmic reticulum (ER) protein folding triggered by exogenous or endogenous factors, stimulates a cellular stress response, termed ER stress. ER stress re-establishes ER homeostasis through integrated signaling termed the ER-unfolded protein response (UPR). In the presence of severe toxic or prolonged ER stress, the pro-survival function of UPR is transformed into a lethal signal transmitted to and executed through mitochondria.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
January 2017
The gap between prostate cancer disparities among American men is narrowing, which is mostly due to increased screening of African American (AA) men. However, the biological reasons for prostate cancer disparities among American men still remain undefined. Mitochondrion, an organelle within cells, regulates both cell survival and cell death mechanisms.
View Article and Find Full Text PDFDevelopment of therapeutic resistance is responsible for most prostate cancer (PCa) related mortality. Resistance has been attributed to an acquired or selected cancer stem cell phenotype. Here we report the histone deacetylase inhibitor apicidin (APC) or ER stressor thapsigargin (TG) potentiate paclitaxel (TXL)-induced apoptosis in PCa cells and limit accumulation of cancer stem cells.
View Article and Find Full Text PDFWe have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation.
View Article and Find Full Text PDFX-chromosome-linked inhibitor of apoptosis protein (XIAP) has an important regulatory role in programmed cell death by inhibiting the caspase cascade. Activation of XIAP-dependent signaling culminates into regulation of multiple cellular processes including apoptosis, innate immunity, epithelial-to-mesenchymal transition, cell migration, invasion, metastasis and differentiation. Although XIAP localizes to the cytosolic compartment, XIAP-mediated cellular signaling encompasses mitochondrial and post-mitochondrial levels.
View Article and Find Full Text PDF