The generation of neuronal diversity remains incompletely understood. In Drosophila, the central brain is populated by neural stem cells derived from progenitors called neuroblasts (NBs). There are two types of NBs, type 1 and 2.
View Article and Find Full Text PDFStem cells must balance proliferation and quiescence, with excess proliferation favoring tumor formation, and premature quiescence preventing proper organogenesis. Drosophila brain neuroblasts are a model for investigating neural stem cell entry and exit from quiescence. Neuroblasts begin proliferating during embryogenesis, enter quiescence prior to larval hatching, and resume proliferation 12-30h after larval hatching.
View Article and Find Full Text PDFProper functioning of the nervous system relies not only on the generation of a vast repertoire of distinct neural cell types but also on the precise neural circuitry within them. How the generation of highly diverse neural populations is regulated during development remains a topic of interest. Landmark studies in Drosophila have identified the genetic and temporal cues regulating neural diversity and thus have provided valuable insights into our understanding of temporal patterning of the central nervous system.
View Article and Find Full Text PDFResveratrol is a polyphenolic compound produced by plants which makes its way into the human diet through plant-based foods. It has been shown to provide many health benefits, helping to ward of age-related diseases and promoting cardiovascular health. Additionally, resveratrol is a potent activator of the Notch signaling pathway.
View Article and Find Full Text PDFNotch signaling is a form of intercellular communication which plays pivotal roles at various stages in development and disease. Previous findings have hinted that integrins and extracellular matrix may regulate Notch signaling, although a mechanistic basis for this interaction had not been identified. Here, we reveal that the regulation of Notch by integrins and extracellular matrix is carried out by Src family kinases (SFKs) working downstream of integrins.
View Article and Find Full Text PDFThe traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps.
View Article and Find Full Text PDF