Structural disorder in proteins is central to cellular signaling, where conformational plasticity equips molecules to promiscuously interact with different partners. By engaging with multiple binding partners via the rearrangement of its three helices, the nuclear coactivator binding domain (NCBD) of the CBP/p300 transcription factor is a paradigmatic example of promiscuity. Recently, molecular simulations and experiments revealed that, through the establishment of long-range electrostatic interactions, intended as salt-bridges formed between the post-translationally inserted phosphate and positively charged residues in helix H3 of NCBD, phosphorylation triggers NCBD compaction, lowering its affinity for binding partners.
View Article and Find Full Text PDFMore than 1600 human transcription factors orchestrate the transcriptional machinery to control gene expression and cell fate. Their function is conveyed through intrinsically disordered regions (IDRs) containing activation or repression domains but lacking quantitative structural ensemble models prevents their mechanistic decoding. Here we integrate single-molecule FRET and NMR spectroscopy with molecular simulations showing that DNA binding can lead to complex changes in the IDR ensemble and accessibility.
View Article and Find Full Text PDFIntrinsically disordered proteins (IDPs) play key roles in cellular regulation, including signal transduction, transcription, and cell-cycle control. Accordingly, IDPs can commonly interact with numerous different target proteins, and their interaction networks are expected to be highly regulated. However, many of the underlying regulatory mechanisms have remained unclear.
View Article and Find Full Text PDFWe simulated the dynamics of a set of peptides characterized by ensembles rich in PPII-helical content, to assess the ability of the most recent Kirkwood-Buff force field (KBFF20) to sample this conformational peculiarity. KBFF has been previously shown to capably reproduce experimental dimensions of disordered proteins, while being limited in confidently sampling structured proteins. Further development of the force field bridged this gap.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
November 2021
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns.
View Article and Find Full Text PDF