Integrating genomic, hyperspectral imaging (HSI), and environmental data enhances wheat yield predictions, with HSI providing detailed spectral insights for predicting complex grain yield (GY) traits. Incorporating HSI data with single nucleotide polymorphic markers (SNPs) resulted in a substantial improvement in predictive ability compared to the conventional genomic prediction models. Over the course of several years, the prediction ability varied due to diverse weather conditions.
View Article and Find Full Text PDFEnhancing predictive modeling accuracy in wheat (Triticum aestivum) breeding through the integration of high-throughput phenotyping (HTP) data with genomic information is crucial for maximizing genetic gain. In this study, spanning four locations in the southeastern United States over 3 years, models to predict grain yield (GY) were investigated through different cross-validation approaches. The results demonstrate the superiority of multivariate comprehensive models that incorporate both genomic and HTP data, particularly in accurately predicting GY across diverse locations and years.
View Article and Find Full Text PDFBackground: Recently genomic selection (GS) has emerged as an important tool for plant breeders to select superior genotypes. Multi-trait (MT) prediction model provides an opportunity to improve the predictive ability of expensive and labor-intensive traits. In this study, we assessed the potential use of a MT genomic prediction model by incorporating two physiological traits (canopy temperature, CT and normalized difference vegetation index, NDVI) to predict 5 complex primary traits (harvest index, HI; grain yield, GY; grain number, GN; spike partitioning index, SPI; fruiting efiiciency, FE) using two cross-validation schemes CV1 and CV2.
View Article and Find Full Text PDFThe performance of genomic prediction (GP) on genetically correlated traits can be improved through an interdependence multi-trait model under a multi-environment context. In this study, a panel of 237 soft facultative wheat ( L.) lines was evaluated to compare single- and multi-trait models for predicting grain yield (GY), harvest index (HI), spike fertility (SF), and thousand grain weight (TGW).
View Article and Find Full Text PDFAn integration of field-based phenotypic and genomic data can potentially increase the genetic gain in wheat breeding for complex traits such as grain and biomass yield. To validate this hypothesis in empirical field experiments, we compared the prediction accuracy between multi-kernel physiological and genomic best linear unbiased prediction (BLUP) model to a single-kernel physiological or genomic BLUP model for grain yield (GY) using a soft wheat population that was evaluated in four environments. The physiological data including canopy temperature (CT), SPAD chlorophyll content (SPAD), membrane thermostability (MT), rate of senescence (RS), stay green trait (SGT), and NDVI values were collected at four environments (2016, 2017, and 2018 at Citra, FL; 2017 at Quincy, FL).
View Article and Find Full Text PDF