We demonstrate transfer learning as a tool to improve the efficacy of training deep learning models based on residual neural networks (ResNets). Specifically, we examine its use for study of multi-scale electrically large metasurface arrays under open boundary conditions in electromagnetic metamaterials. Our aim is to assess the efficiency of transfer learning across a range of problem domains that vary in their resemblance to the original base problem for which the ResNet model was initially trained.
View Article and Find Full Text PDFIn this work we investigate the use of deep inverse models (DIMs) for designing artificial electromagnetic materials (AEMs) - such as metamaterials, photonic crystals, and plasmonics - to achieve some desired scattering properties (, transmission or reflection spectrum). DIMs are deep neural networks (, deep learning models) that are specially-designed to solve ill-posed inverse problems. There has recently been tremendous growth in the use of DIMs for solving AEM design problems however there has been little comparison of these approaches to examine their absolute and relative performance capabilities.
View Article and Find Full Text PDFAll-dielectric metasurfaces exhibit exotic electromagnetic responses, similar to those obtained with metal-based metamaterials. Research in all-dielectric metasurfaces currently uses relatively simple unit-cell designs, but increased geometrical complexity may yield even greater scattering states. Although machine learning has recently been applied to the design of metasurfaces with impressive results, the much more challenging task of finding a geometry that yields a desired spectra remains largely unsolved.
View Article and Find Full Text PDFDeep learning has risen to the forefront of many fields in recent years, overcoming challenges previously considered intractable with conventional means. Materials discovery and optimization is one such field, but significant challenges remain, including the requirement of large labeled datasets and one-to-many mapping that arises in solving the inverse problem. Here we demonstrate modeling of complex all-dielectric metasurface systems with deep neural networks, using both the metasurface geometry and knowledge of the underlying physics as inputs.
View Article and Find Full Text PDFEarth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales.
View Article and Find Full Text PDFBackground: Because effective prediction of survival time can be highly beneficial for the treatment of glioblastoma patients, the relationship between survival time and multiple patient characteristics has been investigated. In this paper, we investigate whether the predictive power of a survival model based on clinical patient features improves when MRI features are also included in the model.
Methods: The subjects in this study were 82 glioblastoma patients for whom clinical features as well as MR imaging exams were made available by The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA).
Case selection is a useful approach for increasing the efficiency and performance of case-based classifiers. Multiple techniques have been designed to perform case selection. This paper empirically investigates how class imbalance in the available set of training cases can impact the performance of the resulting classifier as well as properties of the selected set.
View Article and Find Full Text PDFWhen constructing a pattern classifier, it is important to make best use of the instances (a.k.a.
View Article and Find Full Text PDF