Introduction: Radiotherapy has significantly improved cancer survival rates, but it also comes with certain unavoidable complications. Breast and thoracic irradiation, for instance, can unintentionally expose the heart to radiation, leading to damage at the cellular level within the myocardial structures. Detecting and monitoring radiation-induced heart disease early on is crucial, and several radionuclide imaging techniques have shown promise in this regard.
View Article and Find Full Text PDFLeft-sided breast cancer radiotherapy can lead to late cardiovascular complications, including ischemic events. To mitigate these risks, cardiac-sparing techniques such as deep-inspiration breath-hold (DIBH) and intensity-modulated radiotherapy (IMRT) have been developed. However, recent studies have shown that mean heart dose is not a sufficient dosimetric parameter for assessing cardiac exposure.
View Article and Find Full Text PDFBreast radiotherapy can lead to radiation-induced cardiac disease, particularly in left breast cancers. Recent studies have shown that subclinical cardiac lesions, such as myocardial perfusion deficits, may occur early after radiotherapy. The primary method for irradiating breast cancer, known as opposite tangential field radiotherapy, can cause the anterior interventricular coronary artery to receive a high dose of radiation during left breast irradiation.
View Article and Find Full Text PDFBackground: Breast cancer is the most frequent cancer in women in France. Its management has evolved considerably in recent years with a focus on reducing iatrogenic toxicity. The radiotherapy indications are validated in multidisciplinary consultation meetings; however, questions remain outstanding, particularly regarding hypofractionated radiotherapy, partial breast irradiation, and irradiation of the internal mammary chain and axillary lymph node area.
View Article and Find Full Text PDF