Publications by authors named "Jordan E Pinsker"

Article Synopsis
  • A modified Control-IQ system for managing type 1 diabetes was tested in adults, adolescents, children, and preschoolers across a multicenter trial to evaluate the effects of a lower treatment range and a new late bolus feature.
  • The study involved 72 participants who used two different treatment ranges (standard and lower) for two weeks each, with meal challenges performed to assess the new bolus feature.
  • Results showed that using the lower treatment range significantly improved time in range (TIR) and time in tight range (TITR) for managing glucose levels, with no severe complications reported.
View Article and Find Full Text PDF

Background: Customized and standard automated insulin delivery (AID) systems for use in pregnancies of women with preexisting type 1 diabetes (T1D) are being developed and tested to achieve pregnancy appropriate continuous glucose monitoring (CGM) targets. Guidance on the use of CGM for treatment decisions during pregnancy in the United States is limited.

Methods: Ten pregnant women with preexisting T1D participated in a trial evaluating at-home use of a pregnancy-specific AID system.

View Article and Find Full Text PDF

To evaluate the safety and explore the efficacy of use of ultra-rapid lispro (URLi, Lyumjev) insulin in the Tandem t:slim X2 insulin pump with Control-IQ 1.5 technology in children, teenagers, and adults living with type 1 diabetes (T1D). At 14 U.

View Article and Find Full Text PDF

Background: Control-IQ technology version 1.5 allows for a wider range of weight and total daily insulin (TDI) entry, in addition to other changes to enhance performance for users with high basal rates. This study evaluated the safety and performance of the updated Control-IQ system for users with basal rates >3 units/h and high TDI in a multicenter, single arm, prospective study.

View Article and Find Full Text PDF

Background: Optimization of automated insulin delivery (AID) settings is required to achieve desirable glycemic outcomes. We evaluated safety and efficacy of a computerized system to initialize and adjust insulin delivery settings for the t:slim X2 insulin pump with Control-IQ technology in adults with type 1 diabetes (T1D).

Methods: After a 2-week continuous glucose monitoring (CGM) run-in period, adults with T1D using multiple daily injections (MDI) (N = 33, mean age 36.

View Article and Find Full Text PDF

Severe hypoglycemia (SH) and diabetic ketoacidosis (DKA) remain significant risks with intensive insulin therapy. While these adverse event (AE) rates are generally very low in advanced hybrid closed-loop (AHCL) clinical studies, prospectively collected real-world AE rates are lacking. The Control-IQ Observational (CLIO) study was a single-arm, prospective, longitudinal, postmarket surveillance study of individuals with type 1 diabetes (T1D) age 6 years and older who began the use of t:slim X2 insulin pump with Control-IQ technology in the real-world outpatient setting.

View Article and Find Full Text PDF

Background: The t:connect mobile app from Tandem Diabetes Care recently added a feature to allow t:slim X2 insulin pump users to initiate an insulin bolus from their personal smartphone. User experience and user interface considerations prioritized safety and ease of use, and we examined whether the smartphone bolus feature changed bolus behavior in individuals who bolused less than three times/day.

Methods: We performed a retrospective analysis of t:slim X2 insulin pump users in the United States who had remotely updated their insulin pump software to be compatible with the smartphone bolus version of the app and who gave less than three boluses per day prior to the smartphone bolus update.

View Article and Find Full Text PDF

Objective: There are no commercially available hybrid closed-loop insulin delivery systems customized to achieve pregnancy-specific glucose targets in the U.S. This study aimed to evaluate the feasibility and performance of at-home use of a zone model predictive controller-based closed-loop insulin delivery system customized for pregnancies complicated by type 1 diabetes (CLC-P).

View Article and Find Full Text PDF

Decentralized sensing of analytes in remote locations is today a reality. However, the number of measurable analytes remains limited, mainly due to the requirement for time-consuming successive standard additions calibration used to address matrix effects and resulting in greatly delayed results, along with more complex and costly operation. This is particularly challenging in commonly used immunoassays of key biomarkers that typically require from 60 to 90 min for quantitation based on two standard additions, hence hindering their implementation for rapid and routine diagnostic applications, such as decentralized point-of-care (POC) insulin testing.

View Article and Find Full Text PDF

Automated insulin delivery (AID) systems have proven effective in increasing time-in-range during both clinical trials and real-world use. Further improvements in outcomes for single-hormone (insulin only) AID may be limited by suboptimal insulin delivery settings. Adults (≥18 years of age) with type 1 diabetes were randomized to either sensor-augmented pump (SAP) (inclusive of predictive low-glucose suspend) or adaptive zone model predictive control AID for 13 weeks, then crossed over to the other arm.

View Article and Find Full Text PDF

Pregnancies in type 1 diabetes are high risk, and data in the United States are limited regarding continuous glucose monitoring (CGM)-based hypoglycemia throughout pregnancy while on sensor-augmented insulin pump therapy. Pregnant women with type 1 diabetes in the LOIS-P Study (Longitudinal Observation of Insulin use and glucose Sensor metrics in Pregnant women with type 1 diabetes using continuous glucose monitors and insulin pumps) were enrolled before 17 weeks gestation at three U.S.

View Article and Find Full Text PDF

Evaluating the feasibility of closed-loop insulin delivery with a zone model predictive control (zone-MPC) algorithm designed for pregnancy complicated by type 1 diabetes (T1D). Pregnant women with T1D from 14 to 32 weeks gestation already using continuous glucose monitor (CGM) augmented pump therapy were enrolled in a 2-day multicenter supervised outpatient study evaluating pregnancy-specific zone-MPC based closed-loop control (CLC) with the interoperable artificial pancreas system (iAPS) running on an unlocked smartphone. Meals and activities were unrestricted.

View Article and Find Full Text PDF

Background: The estimation of available active insulin remains a limitation of automated insulin delivery systems. Currently, insulin pumps calculate active insulin using mathematical decay curves, while quantitative measurements of insulin would explicitly provide person-specific PK insulin dynamics to assess remaining active insulin more accurately, permitting more effective glucose control.

Methods: We performed the first clinical evaluation of an insulin immunosensor chip, providing near real-time measurements of insulin levels.

View Article and Find Full Text PDF

To analyze insulin delivery and glycemic metrics throughout the menstrual cycle for women with type 1 diabetes using closed loop control (CLC) insulin delivery. Menstruating women using a CLC system in a clinical trial were invited to record their menstrual cycles through a cycle-tracking application. Sixteen participants provided data for this secondary analysis over three or more complete cycles.

View Article and Find Full Text PDF

Automated insulin delivery (AID) systems have not been evaluated in the context of psychological and pharmacological stress in type 1 diabetes. Our objective was to determine glycemic control and insulin use with Zone Model Predictive Control (zone-MPC) AID system enhanced for states of persistent hyperglycemia versus sensor-augmented pump (SAP) during outpatient use, including in-clinic induced stress. Randomized, crossover, 2-week trial of zone-MPC AID versus SAP in 14 adults with type 1 diabetes.

View Article and Find Full Text PDF

Background: Clinical decision support systems that incorporate information from frequent insulin measurements to enhance individualized diabetes management remain an unmet goal. The development of a disposable insulin strip for fast decentralized point-of-care detection replacing the current centralized lab-based methods used in clinical practice would be highly desirable to improve the establishment of individual insulin absorption patterns and algorithm modeling processes.

Methods: We carried out the development and optimization of a novel decentralized disposable insulin electrochemical sensor focusing on obtaining high analytical and operational performance toward achieving a true point-of-care insulin testing device for clinical on-site application.

View Article and Find Full Text PDF

Expert opinion guidelines and limited data from clinical trials recommend adjustment to bolus insulin doses based on continuous glucose monitor (CGM) trend data, yet minimal evidence exists to support this approach. We performed a clinical evaluation of a novel CGM-informed bolus calculator (CIBC) with automatic insulin bolus dose adjustment based on CGM trend used with sensor-augmented pump therapy. In this multicenter, outpatient study, participants 6-70 years of age with type 1 diabetes (T1D) used the Omnipod 5 System in Manual Mode, first for 7 days without a connected CGM (standard bolus calculator, SBC, phase 1) and then for 7 days with a connected CGM using the CIBC (CIBC phase 2).

View Article and Find Full Text PDF

Automated insulin delivery (AID) systems have proven safe and effective in improving glycemic outcomes in individuals with type 1 diabetes (T1D). Clinical evaluation of this technology has progressed to large randomized, controlled outpatient studies and recent commercial approval of AID systems for children and adults. However, several challenges remain in improving these systems for different subpopulations (e.

View Article and Find Full Text PDF

This paper introduces methods to estimate aspects of physical activity and sedentary behavior from three-axis accelerometer data collected with a wrist-worn device at a sampling rate of 32 [Hz] on adults with type 1 diabetes (T1D) in free-living conditions. In particular, we present two methods able to detect and grade activity based on its intensity and individual fitness as sedentary, mild, moderate or vigorous, and a method that performs activity classification in a supervised learning framework to predict specific user behaviors. Population results for activity level grading show multi-class average accuracy of 99.

View Article and Find Full Text PDF

Suboptimal glycemic control is associated with maternal and neonatal morbidity and mortality in pregnancy complicated by type 1 diabetes (T1D). Prospective analysis of continuous glucose monitoring (CGM) metrics, insulin pump settings, and insulin delivery can better characterize the changes in glycemic levels and insulin use throughout pregnancy with T1D. Prescribed parameters, insulin delivery, carbohydrate intake, and CGM data for 25 pregnant women with T1D from three U.

View Article and Find Full Text PDF

Closed-loop control (CLC) has been shown to improve glucose time in range and other glucose metrics; however, randomized trials >3 months comparing CLC with sensor-augmented pump (SAP) therapy are limited. We recently reported glucose control outcomes from the 6-month international Diabetes Closed-Loop (iDCL) trial; we now report patient-reported outcomes (PROs) in this iDCL trial. Participants were randomized 2:1 to CLC ( = 112) versus SAP ( = 56) and completed questionnaires, including Hypoglycemia Fear Survey, Diabetes Distress Scale (DDS), Hypoglycemia Awareness, Hypoglycemia Confidence, Hyperglycemia Avoidance, and Positive Expectancies of CLC (INSPIRE) at baseline, 3, and 6 months.

View Article and Find Full Text PDF